globalchange  > 气候变化事实与影响
Scopus记录号: 2-s2.0-85060460892
论文题名:
Sensitivity of active-layer freezing process to snow cover in Arctic Alaska
作者: Yi Y.; Kimball J.S.; Chen R.H.; Moghaddam M.; Miller C.E.
刊名: Cryosphere
ISSN: 19940416
出版年: 2019
卷: 13, 期:1
起始页码: 197
结束页码: 218
语种: 英语
英文摘要: The contribution of cold-season soil respiration to the Arctic-boreal carbon cycle and its potential feedback to the global climate remain poorly quantified, partly due to a poor understanding of changes in the soil thermal regime and liquid water content during the soil-freezing process. Here, we characterized the processes controlling active-layer freezing in Arctic Alaska using an integrated approach combining in situ soil measurements, local-scale (~50m) longwave radar retrievals from NASA airborne P-band polarimetric SAR (PolSAR) and a remote-sensing-driven permafrost model. To better capture landscape variability in snow cover and its influence on the soil thermal regime, we downscaled global coarse-resolution (0.5°) MERRA-2 reanalysis snow depth data using finer-scale (500 m) MODIS snow cover extent (SCE) observations. The downscaled 1 km snow depth data were used as key inputs to the permafrost model, capturing finer-scale variability associated with local topography and with favorable accuracy relative to the SNOTEL site measurements in Arctic Alaska (mean RMSE = 0.16m, bias =-m). In situ tundra soil dielectric constant (ϵ) profile measurements were used for model parameterization of the soil organic layer and unfrozen-water content curve. The resulting model-simulated mean zero-curtain period was generally consistent with in situ observations spanning a 2° latitudinal transect along the Alaska North Slope (R: 0.6±0.2; RMSE: 19±6 days), with an estimated mean zero-curtain period ranging from 61±11 to 73±15 days at 0.25 to 0.45 m depths. Along the same transect, both the observed and model-simulated zero-curtain periods were positively correlated (R 0.55, p 0.01) with a MODIS-derived snow cover fraction (SCF) from September to October. We also examined the airborne P-band radar-retrieved μ profile along this transect in 2014 and 2015, which is sensitive to near-surface soil liquid water content and freeze-thaw status. The μ difference in radar retrievals for the surface (~>0.1 m) soil between late August and early October was negatively correlated with SCF in September (R=0.77, p 0.01); areas with lower SCF generally showed larger μ reductions, indicating earlier surface soil freezing. On regional scales, the simulated zero curtain in the upper ( 0.4m) soils showed large variability and was closely associated with variations in early cold-season snow cover. Areas with earlier snow onset generally showed a longer zero-curtain period; however, the soil freeze onset and zero-curtain period in deeper ( 0.5m) soils were more closely linked to maximum thaw depth. Our findings indicate that a deepening active layer associated with climate warming will lead to persistent unfrozen conditions in deeper soils, promoting greater cold-season soil carbon loss. © Author(s) 2019.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/122688
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, United States; Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT, United States; Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States

Recommended Citation:
Yi Y.,Kimball J.S.,Chen R.H.,et al. Sensitivity of active-layer freezing process to snow cover in Arctic Alaska[J]. Cryosphere,2019-01-01,13(1)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Yi Y.]'s Articles
[Kimball J.S.]'s Articles
[Chen R.H.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Yi Y.]'s Articles
[Kimball J.S.]'s Articles
[Chen R.H.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Yi Y.]‘s Articles
[Kimball J.S.]‘s Articles
[Chen R.H.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.