globalchange  > 气候减缓与适应
DOI: 10.1016/j.jhydrol.2018.11.006
WOS记录号: WOS:000455694400040
论文题名:
Impacts of groundwater depth on regional scale soil gleyization under changing climate in the Poyang Lake Basin, China
作者: Yang, Yun1,3,4; Wang, Zhenchen2; Xie, Yueqing2; Ataie-Ashtiani, Behzad3,4,5; Simmons, Craig T.3,4; Luo, Qiankun6; Chen, Gan2; Zhang, Qi7; Wu, Jianfeng2; Wang, Jinguo1; Wu, Jichun2
通讯作者: Yang, Yun ; Wu, Jianfeng
刊名: JOURNAL OF HYDROLOGY
ISSN: 0022-1694
EISSN: 1879-2707
出版年: 2019
卷: 568, 页码:501-516
语种: 英语
英文关键词: Soil gleyization ; Groundwater depth ; Numerical modeling ; Climate change ; Poyang Lake
WOS关键词: DRAINAGE SYSTEM ; PADDY SOILS ; GLEY SOILS ; STREAMFLOW ; TOPOGRAPHY ; CATCHMENT ; DISCHARGE ; PATTERNS
WOS学科分类: Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS研究方向: Engineering ; Geology ; Water Resources
英文摘要:

Various natural and anthropogenic factors affect the formation of gleyed soil. It is a major challenge to identify the key hazard factors and evaluate the dynamic evolutionary process of soil gleyization at a regional scale under future climate change. This study addressed this complex challenge based on regional groundwater modelling for a typical agriculture region located in the Ganjiang River Delta (GRD) of Poyang Lake Basin, China. We first implemented in-situ soil sampling analysis and column experiments under different water depths to examine the statistical relationship between groundwater depth (GD) and gleyization indexes including active reducing substance, ferrous iron content, and redox potential. Subsequently, a three-dimensional groundwater flow numerical model for the GRD was established to evaluate the impacts of the historical average level and future climate change on vadose saturation and soil gleyization (averaged over 2016-2050) in the irrigated farmland. Three climate change scenarios associated with carbon dioxide emission (A1B, A2, and B1) were predicted by the ECHAM5 global circulation model published in IPCC Assessment Report (2007). The ECHAM5 outputs were applied to quantify the variation of groundwater level and to identify the potential maximum gleyed zones affected by the changes of meteorological and hydrological conditions. The results of this study indicate that GD is an indirect indicator for predicting the gradation of soil gleyization at the regional scale, and that the GRD will suffer considerable soil gleyization by 2050 due to fluctuations of the water table induced by future climate changes. Compared with the annually average condition, the climate scenario B1 will probably exacerbate soil gleyization with an 8.8% increase in total gleyed area in GRD. On average, the highly gleyed areas will increase in area by 29.7 km(2), mainly on the riverside area, and the medium-slightly gleyed area will increase by 19.2 km(2) in the middle region.


Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/125909
Appears in Collections:气候减缓与适应

Files in This Item:

There are no files associated with this item.


作者单位: 1.Hohai Univ, Sch Earth Sci & Engn, Nanjing 210098, Jiangsu, Peoples R China
2.Nanjing Univ, Sch Earth Sci & Engn, Dept Hydrosci, Key Lab Surficial Geochem,Minist Educ, Nanjing 210023, Jiangsu, Peoples R China
3.Flinders Univ S Australia, Natl Ctr Groundwater Res & Training, Adelaide, SA 5001, Australia
4.Flinders Univ S Australia, Coll Sci & Engn, Adelaide, SA 5001, Australia
5.Sharif Univ Technol, Dept Civil Engn, Tehran 1458889694, Iran
6.Hefei Univ Technol, Sch Resources & Environm Engn, Hefei 230009, Anhui, Peoples R China
7.Nanjing Inst Geog & Limnol, State Key Lab Lake Sci & Environm, Nanjing 210008, Jiangsu, Peoples R China

Recommended Citation:
Yang, Yun,Wang, Zhenchen,Xie, Yueqing,et al. Impacts of groundwater depth on regional scale soil gleyization under changing climate in the Poyang Lake Basin, China[J]. JOURNAL OF HYDROLOGY,2019-01-01,568:501-516
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Yang, Yun]'s Articles
[Wang, Zhenchen]'s Articles
[Xie, Yueqing]'s Articles
百度学术
Similar articles in Baidu Scholar
[Yang, Yun]'s Articles
[Wang, Zhenchen]'s Articles
[Xie, Yueqing]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Yang, Yun]‘s Articles
[Wang, Zhenchen]‘s Articles
[Xie, Yueqing]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.