globalchange  > 全球变化的国际研究计划
DOI: 10.1016/j.scitotenv.2019.03.315
WOS记录号: WOS:000466418300024
论文题名:
Water quality modelling of the Mekong River basin: Climate change and socioeconomics drive flow and nutrient flux changes to the Mekong Delta
作者: Whitehead, P. G.1,2; Jin, L.3; Bussi, G.2; Voepel, H. E.1; Darby, S. E.1; Vasilopoulos, G.1,7; Manley, R.4; Rodda, H.4; Hutton, C.1; Hackney, C.7; Van Pham Dang Tri5; Hung, N. N.6
通讯作者: Whitehead, P. G.
刊名: SCIENCE OF THE TOTAL ENVIRONMENT
ISSN: 0048-9697
EISSN: 1879-1026
出版年: 2019
卷: 673, 页码:218-229
语种: 英语
英文关键词: Mekong River ; Nutrients ; Modelling ; Climate change ; Socioeconomic change ; Land use change ; Vietnam Delta
WOS关键词: MULTIPLE SOURCE ASSESSMENT ; GANGES-BRAHMAPUTRA-MEGHNA ; NITROGEN MODEL ; CATCHMENTS INCA ; SYSTEM IMPACTS ; DYNAMICS ; INDIA ; RUNOFF ; SCALE ; ASIA
WOS学科分类: Environmental Sciences
WOS研究方向: Environmental Sciences & Ecology
英文摘要:

The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 degrees C rise whilst seeking to pursue options that limit temperature rise to 1.5 degrees C. The RCP 8.5 scenario is associated with a larger 3-4 degrees C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes. (C) 2019 Elsevier B.V. All rights reserved.


Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/143226
Appears in Collections:全球变化的国际研究计划

Files in This Item:

There are no files associated with this item.


作者单位: 1.Univ Southampton, Sch Geog & Environm Sci, Southampton SO17 1BJ, Hants, England
2.Univ Oxford, Sch Geog & Environm, Oxford OX1 3QY, England
3.SUNY Coll Cortland, Geol Dept, Cortland, NY 13045 USA
4.Water Resource Associates, POB 838, Wallingford OX10 9XA, Oxon, England
5.Can Tho Univ, Res Inst Climate Change, Coll Environm & Nat Resources, Dept Water Resources, Can Tho, Vietnam
6.SIWRR, Res Ctr Rural Infrastruct Engn Dev, 658th Vo Van Kiet Ave,Dist 5, Hcmc, Vietnam
7.Univ Hull, Energy & Environm Inst, Cottingham Rd, Kingston Upon Hull HU6 7RX, N Humberside, England

Recommended Citation:
Whitehead, P. G.,Jin, L.,Bussi, G.,et al. Water quality modelling of the Mekong River basin: Climate change and socioeconomics drive flow and nutrient flux changes to the Mekong Delta[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2019-01-01,673:218-229
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Whitehead, P. G.]'s Articles
[Jin, L.]'s Articles
[Bussi, G.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Whitehead, P. G.]'s Articles
[Jin, L.]'s Articles
[Bussi, G.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Whitehead, P. G.]‘s Articles
[Jin, L.]‘s Articles
[Bussi, G.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.