globalchange  > 全球变化的国际研究计划
DOI: 10.1016/j.agrformet.2019.05.018
WOS记录号: WOS:000480376400010
论文题名:
Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia
作者: Feng, Puyu1,2; Wang, Bin2; Liu, De Li2,3,4; Waters, Cathy5; Yu, Qiang1,6,7
通讯作者: Yu, Qiang
刊名: AGRICULTURAL AND FOREST METEOROLOGY
ISSN: 0168-1923
EISSN: 1873-2240
出版年: 2019
卷: 275, 页码:100-113
语种: 英语
英文关键词: Extreme climate events ; Wheat yield ; APSIM ; Random forest ; Hybrid model
WOS关键词: AGRICULTURAL REFERENCE INDEX ; WATER-USE EFFICIENCY ; HEAT-STRESS ; CROP YIELD ; WEATHER CONDITIONS ; HIGH-TEMPERATURE ; DROUGHT STRESS ; WINTER ; MAIZE ; TOLERANCE
WOS学科分类: Agronomy ; Forestry ; Meteorology & Atmospheric Sciences
WOS研究方向: Agriculture ; Forestry ; Meteorology & Atmospheric Sciences
英文摘要:

Accurately assessing the impacts of extreme climate events (ECEs) on crop yield can help develop effective agronomic practices to deal with climate change impacts. Process-based crop models are useful tools to evaluate climate change impacts on crop productivity but are usually limited in modelling the effects of ECEs due to over-simplification or vague description of certain process and uncertainties in parameterization. In this study, we firstly developed a hybrid model by incorporating the APSIM model outputs and growth stage-specific ECEs indicators (i.e. frost, drought and heat stress) into the Random Forest (RF) model, with the multiple linear regression (MLR) model as a benchmark. The results showed that the APSIM + RF hybrid model could explain 81% of the observed yield variations in the New South Wales wheat belt of south-eastern Australia, which had a 33% improvement in modelling accuracy compared to the APSIM model alone and 19% improvement compared to the APSIM + MLR hybrid model. Drought events during the grain-filling and vegetative stages and heat events immediately prior to anthesis were identified as the three most serious ECEs causing yield losses. We then compared the APSIM + RF hybrid model with the APSIM model to estimate the effects of future climate change on wheat yield. It was interesting to find that future yield projected from single APSIM model might have a 1-10% overestimation compared to the APSIM + RF hybrid model. The APSIM + RF hybrid model indicated that we were underestimating the effects of climate change and future yield might be lower than predicted using single APSIM informed modelling due to lack of adequately accounting for ECEs-induced yield losses. Increasing heat events around anthesis and grain-filling periods were identified to be major factors causing yield losses in the future. Therefore, we conclude that including the effects of ECEs on crop yield is necessary to accurately assess climate change impacts. We expect our proposed hybrid-modelling approach can be applied to other regions and crops and offer new insights of the effects of ECEs on crop yield.


Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/146999
Appears in Collections:全球变化的国际研究计划

Files in This Item:

There are no files associated with this item.


作者单位: 1.Univ Technol Sydney, Fac Sci, Sch Life Sci, POB 123, Broadway, NSW 2007, Australia
2.Wagga Wagga Agr Inst, NSW Dept Primary Ind, Wagga Wagga, NSW 2650, Australia
3.Univ New South Wales, Climate Change Res Ctr, Sydney, NSW 2052, Australia
4.Univ New South Wales, ARC Ctr Excellence Climate Extremes, Sydney, NSW 2052, Australia
5.Orange Agr Inst, NSW Dept Primary Ind, Orange, NSW 2800, Australia
6.Northwest A&F Univ, State Key Lab Soil Eros & Dryland Fanning Loess P, Yangling 712100, Shaanxi, Peoples R China
7.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China

Recommended Citation:
Feng, Puyu,Wang, Bin,Liu, De Li,et al. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia[J]. AGRICULTURAL AND FOREST METEOROLOGY,2019-01-01,275:100-113
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Feng, Puyu]'s Articles
[Wang, Bin]'s Articles
[Liu, De Li]'s Articles
百度学术
Similar articles in Baidu Scholar
[Feng, Puyu]'s Articles
[Wang, Bin]'s Articles
[Liu, De Li]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Feng, Puyu]‘s Articles
[Wang, Bin]‘s Articles
[Liu, De Li]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.