globalchange  > 全球变化的国际研究计划
DOI: 10.1016/j.envexpbot.2019.103819
WOS记录号: WOS:000482246100019
论文题名:
Effects of elevated growth temperature and enhanced atmospheric vapour pressure deficit on needle and root terpenoid contents of two Douglas fir provenances
作者: Duan, Qiuxiao1; Kleiber, Anita1; Jansen, Kirstin2,3; Junker, Laura Verena4,5,6,12; Kammerer, Bernd7; Han, Gang8; Zimmer, Ina9; Rennenberg, Heinz1; Schnitzler, Joerg-Peter9; Ensminger, Ingo5,6; Gessler, Arthur2,10,11; Kreuzwieser, Juergen-Frohn1
通讯作者: Kreuzwieser, Juergen-Frohn
刊名: ENVIRONMENTAL AND EXPERIMENTAL BOTANY
ISSN: 0098-8472
EISSN: 1873-7307
出版年: 2019
卷: 166
语种: 英语
英文关键词: Elevated growth temperature ; Douglas fir provenances ; Terpenoid contents ; Terpene emission ; Terpenoid synthase activity
WOS关键词: VOLATILE ORGANIC-COMPOUND ; MONOTERPENE SYNTHASE ACTIVITIES ; CARBON-DIOXIDE ; THYLAKOID MEMBRANES ; METHYL JASMONATE ; HEAT TOLERANCE ; EMISSION RATES ; CLIMATE-CHANGE ; GAS-EXCHANGE ; VOC EMISSION
WOS学科分类: Plant Sciences ; Environmental Sciences
WOS研究方向: Plant Sciences ; Environmental Sciences & Ecology
英文摘要:

In the present work, we studied the effects of elevated air temperatures, which were above the optimum for photosynthesis, in combination with enhanced atmospheric VPD on two Douglas fir provenances grown under controlled conditions in a climate chamber. Provenance Monte Creek (MC) from the menziesii-glauca transition zone, Southern British Columbia, Canada, was derived from a dry environment receiving ca. half of the precipitation at its natural site than the interior provenance Pend Oreille (PO) from a mesic site in Northeast Washington State, US. We determined the terpenoid contents in needles and roots of the trees as well as terpene emission from needles and terpenoid synthase activities observing clear provenance-specific patterns. Whereas total terpenoid contents in needles dropped significantly in provenance PO in response to thermal stress, they remained unaffected in MC. The drop in terpenoid content in PO was due to decreased abundance of almost all identified terpenoids with exception of five compounds. Terpene emission was significantly enhanced in thermal-stressed provenance MC but it was unaffected in provenance PO. Oppositely, root terpenoid contents were rather stable in both provenances upon high temperature and enhanced atmospheric VPD. Similarly, we did not observe stress effects on terpenoid synthase activity, which was used as a proxy for the formation of terpenoids. The results indicate that features of the original habitat of the trees determine plant chemotypic properties, for example, thermal stress related responses. The observed decrease of terpenoid levels in needles of PO after long-term exposure to elevated temperature/enhanced atmospheric VPD, might weaken stress-exposed trees. Since terpenoids are essential components of the conifers' defense arsenal against herbivores, decreased terpenoid levels might increase susceptibility of stressed trees to above- and belowground herbivore challenges.


Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/147242
Appears in Collections:全球变化的国际研究计划

Files in This Item:

There are no files associated with this item.


作者单位: 1.Albert Ludwigs Univ Freiburg, Inst Forest Sci, Chair Tree Physiol, Georges Kohler Allee 53, D-79110 Freiburg, Germany
2.Leibniz Ctr Agr Landscape Res ZALF, Inst Landscape Biogeochem, Eberswalderstr 84, D-15374 Muncheberg, Germany
3.Leuphana Univ Luneburg, Inst Ecol, Scharnhorststr 1, D-21335 Luneburg, Germany
4.Forstliche Versuchs & Forsch Anstalt Baden Wurtte, Wonnhaldestr 4, D-79100 Freiburg, Germany
5.Univ Toronto Mississauga, Dept Biol, Grad Program Cell & Syst Biol, 3359 Mississauga Rd, Mississauga, ON, Canada
6.Univ Toronto Mississauga, Dept Biol, Grad Program Ecol & Evolutionary Biol, 3359 Mississauga Rd, Mississauga, ON, Canada
7.Albert Ludwigs Univ Freiburg, Ctr Biosyst Anal ZBSA, Habsburgerstr 49, Freiburg, Germany
8.Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China
9.Helmholtz Zentrum Munchen GmbH, Inst Biochem Plant Pathol, Res Unit Environm Simulat, D-85764 Neuherberg, Germany
10.Swiss Fed Inst Technol, Inst Terr Ecosyst, CH-8092 Zurich, Switzerland
11.Swiss Fed Inst Forest Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland
12.Forschungszentrum Julich, Plant Sci, Inst Bio & Geosci IBG 2, Julich, Germany

Recommended Citation:
Duan, Qiuxiao,Kleiber, Anita,Jansen, Kirstin,et al. Effects of elevated growth temperature and enhanced atmospheric vapour pressure deficit on needle and root terpenoid contents of two Douglas fir provenances[J]. ENVIRONMENTAL AND EXPERIMENTAL BOTANY,2019-01-01,166
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Duan, Qiuxiao]'s Articles
[Kleiber, Anita]'s Articles
[Jansen, Kirstin]'s Articles
百度学术
Similar articles in Baidu Scholar
[Duan, Qiuxiao]'s Articles
[Kleiber, Anita]'s Articles
[Jansen, Kirstin]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Duan, Qiuxiao]‘s Articles
[Kleiber, Anita]‘s Articles
[Jansen, Kirstin]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.