globalchange  > 全球变化的国际研究计划
DOI: 10.1016/j.ecolmodel.2019.108765
WOS记录号: WOS:000482870800009
论文题名:
Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate
作者: Foster, Adrianna C.1,2; Armstrong, Amanda H.2,3; Shuman, Jacquelyn K.4; Shugart, Herman H.3; Rogers, Brendan M.5; Mack, Michelle C.6,7; Goetz, Scott J.1; Ranson, K. Jon2
通讯作者: Foster, Adrianna C.
刊名: ECOLOGICAL MODELLING
ISSN: 0304-3800
EISSN: 1872-7026
出版年: 2019
卷: 409
语种: 英语
英文关键词: Forest modeling ; UVAFME ; Boreal forest ; Individual-based model ; Disturbances ; Climate change
WOS关键词: BOREAL FORESTS ; COMPUTER-MODEL ; WHITE SPRUCE ; FIRE REGIME ; GAP MODEL ; BIOMASS ; CARBON ; VEGETATION ; EMISSIONS ; DYNAMICS
WOS学科分类: Ecology
WOS研究方向: Environmental Sciences & Ecology
英文摘要:

The boreal zone of Alaska is dominated by interactions between disturbances, vegetation, and soils. These interactions are likely to change in the future through increasing permafrost thaw, more frequent and intense wildfires, and vegetation change from drought and competition. We utilize an individual tree-based vegetation model, the University of Virginia Forest Model Enhanced (UVAFME), to estimate current and future forest conditions across sites within interior Alaska. We updated UVAFME for application within interior Alaska, including improved simulation of permafrost dynamics, litter decay, nutrient dynamics, fire mortality, and post-fire regrowth. Following these updates, UVAFME output on species-specific biomass and stem density was comparable to inventory measurements at various forest types within interior Alaska. We then simulated forest response to climate change at specific inventory locations and across the Tanana Valley River Basin on a 2 x 2 km(2) grid. We derived projected temperature and precipitation from a five-model average taken from the CMIP5 archive under the RCP 4.5 and 8.5 scenarios. Results suggest that climate change and the concomitant impacts on wildfire and permafrost dynamics will result in overall decreases in biomass (particularly for spruce (Picea spp.)) within the interior Tanana Valley, despite increases in quaking aspen (Populus tremuloides) biomass, and a resulting shift towards higher deciduous fraction. Simulation results also predict increases in biomass at cold, wet locations and at high elevations, and decreases in biomass in dry locations, under both moderate (RCP 4.5) and extreme (RCP 8.5) climate change scenarios. These simulations demonstrate that a highly detailed, species interactive model can be used across a large region within Alaska to investigate interactions between vegetation, climate, wildfire, and permafrost. The vegetation changes predicted here have the capacity to feed back to broader scale climate-forest interactions in the North American boreal forest, a region which contributes significantly to the global carbon and energy budgets.


Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/147349
Appears in Collections:全球变化的国际研究计划

Files in This Item:

There are no files associated with this item.


作者单位: 1.No Arizona Univ, Sch Informat Comp & Cyber Syst, 1295 S Knoles Dr, Flagstaff, AZ 86011 USA
2.NASA, Goddard Space Flight Ctr, Code 618,8800 Greenbelt Rd, Greenbelt, MD 20771 USA
3.Univ Virginia, 376 Clark Hall,291 McCormick Rd, Charlottesville, VA 22904 USA
4.Natl Ctr Atmospher Res, 1850 Table Mesa Dr, Boulder, CO 80305 USA
5.Woods Hole Res Ctr, 149 Woods Hole Rd, Falmouth, MA 02540 USA
6.No Arizona Univ, Ctr Ecosyst Sci & Soc, 600 S Knoles Dr, Flagstaff, AZ 86011 USA
7.No Arizona Univ, Dept Biol Sci, 600 S Knoles Dr, Flagstaff, AZ 86011 USA

Recommended Citation:
Foster, Adrianna C.,Armstrong, Amanda H.,Shuman, Jacquelyn K.,et al. Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate[J]. ECOLOGICAL MODELLING,2019-01-01,409
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Foster, Adrianna C.]'s Articles
[Armstrong, Amanda H.]'s Articles
[Shuman, Jacquelyn K.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Foster, Adrianna C.]'s Articles
[Armstrong, Amanda H.]'s Articles
[Shuman, Jacquelyn K.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Foster, Adrianna C.]‘s Articles
[Armstrong, Amanda H.]‘s Articles
[Shuman, Jacquelyn K.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.