globalchange  > 气候变化事实与影响
CSCD记录号: CSCD:6338904
论文题名:
灰度共生矩阵纹理特征对SAR海冰漂移监测的增强性能研究
其他题名: Research on the enhanced performance of texture feature for sea ice drift monitoring based on gray level co-occurrence matrices
作者: 李小娜1; 张杰2; 戴永寿3; 张晰2
刊名: 海洋科学
ISSN: 1000-3096
出版年: 2018
卷: 42, 期:4, 页码:578-588
语种: 中文
中文关键词: 海冰漂移 ; 纹理特征
英文关键词: SAR ; sea ice drift ; texture feature ; SAR
WOS学科分类: REMOTE SENSING
WOS研究方向: Remote Sensing
中文摘要: 海冰漂移监测对气候变化分析、船只航行、海上石油平台等海上活动安全作业具有重要意义。当前主流的SAR海冰漂移监测方法多是基于SAR灰度图开展的,其受噪声、环境等因素的影响较大,导致其在海冰漂移探测时,特征失配率高,匹配正确率低。针对这一问题,本文尝试利用SAR海冰纹理特征来增强海冰漂移探测性能。首先对比分析了8种纹理特征对海冰漂移探测中特征匹配的增强性能,筛选出能够有效增强特征匹配性能的最优纹理特征;其次进一步分析了海冰类型、入射角和分辨率对基于纹理特征的海冰漂移探测性能增强的影响。实验结果表明,均值是最优的纹理特征,与SAR强度图相比,特征匹配正确率提高了约7%。
英文摘要: Sea ice drift monitoring is important for climate change analysis, vessel navigation, and offshore maritime safety operations. The current methods of synthetic aperture radar (SAR) sea ice drift tracking are based on SAR intensity image analysis. However, intensity images are easily influenced by noise and have a high probability of mismatching and low matching accuracy for sea ice drift detection. Considering the above problems, this paper attempts to use the SAR sea ice texture features to enhance the drift detection performance. First, the enhancement performance of eight texture features for pattern matching in sea ice drift detection is analyzed, and the optimal texture feature is selected. Then the effects of sea ice type, incident angle, and resolution on the enhanced performance of texture features are analyzed. The results show that the mean value is the optimal texture feature, and compared with the SAR intensity image analysis approach, the proposed method improves the pattern matching accuracy by about 7%.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/154215
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 1.中国石油大学(华东)信息与控制工程学院
2.国家海洋局第一海洋研究所,
3., 青岛
4.青岛, 山东
5.山东 266580
6.266061, 中国
7.国家海洋局第一海洋研究所, 青岛, 山东 266061, 中国
8.中国石油大学(华东)信息与控制工程学院, 青岛, 山东 266580, 中国

Recommended Citation:
李小娜,张杰,戴永寿,等. 灰度共生矩阵纹理特征对SAR海冰漂移监测的增强性能研究[J]. 海洋科学,2018-01-01,42(4):578-588
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[李小娜]'s Articles
[张杰]'s Articles
[戴永寿]'s Articles
百度学术
Similar articles in Baidu Scholar
[李小娜]'s Articles
[张杰]'s Articles
[戴永寿]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[李小娜]‘s Articles
[张杰]‘s Articles
[戴永寿]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.