globalchange  > 气候变化与战略
DOI: 10.1016/j.atmosenv.2020.117305
论文题名:
Asian dust observed during KORUS-AQ facilitates the uptake and incorporation of soluble pollutants during transport to South Korea
作者: Heim E.W.; Dibb J.; Scheuer E.; Jost P.C.; Nault B.A.; Jimenez J.L.; Peterson D.; Knote C.; Fenn M.; Hair J.; Beyersdorf A.J.; Corr C.; Anderson B.E.
刊名: Atmospheric Environment
ISSN: 1352-2310
出版年: 2020
卷: 224
语种: 英语
英文关键词: Air quality ; Calcite ; Calcium carbonate ; NASA ; Nitric acid ; Nitrogen compounds ; Optical properties ; Particle size analysis ; Particles (particulate matter) ; Atmospheric model ; Chemical dynamics ; Cloud formation process ; Conceptual model ; Dust optical properties ; Heterogeneous chemistry ; Particle surface ; Secondary coating ; Dust ; air quality ; atmospheric pollution ; calcium carbonate ; carbonate ; chemical composition ; dust ; heterogeneity ; mixing ; pollutant transport ; surface area ; aerosol ; Article ; chemical reaction ; concentration (parameter) ; conceptual model ; dust ; meteorology ; pollutant ; priority journal ; South Korea ; spatial orientation ; surface area ; traffic and transport ; China ; South Korea ; United States
中文摘要: The air quality of South Korea was the focus of the NASA/NIER KORean -United States Air Quality (KORUS-AQ) mission of 2016. KORUS-AQ was planned for the period after the spring peak in outbreaks of Asian dust. Regardless of this strategic planning, quantifiable dust was still observed via instrumentation on the NASA DC-8 in early May. A novel analysis of supermicron dust and associated supermicron ionic relationships was completed using two size dependent instruments. This supermicron dust provided surface area for heterogeneous chemistry between CaCO3, the gases HNO3, NO2, and SO2, and particulate (NH4)2SO4. Uptake of the pollutant gases is greatly enhanced by formation of an aqueous layer on the surface of the dust particles. More water is attracted to particles where uptake of HNO3 has replaced surface CaCO3 with Ca(NO3)2 generating a dynamic aqueous layer on the dust particle. We propose that particulate (NH4)2SO4 coagulated with dust to form (NH4)2Ca(SO4)2 on the particle surface, which rapidly formed CaSO4 and NH4+ in a Ca(NO3)2 facilitated aqueous layer. A conceptual model is proposed to explain these dust uptake chemical processes. We define the nanoequivalent concentration of supermicron SO42− plus NO3− over the nanoequivalent concentration of supermicron NH4+ plus Ca2+ as the Dust Pollution Index (DPI), used to quantify the extent to which carbonate dust has been modified. DPI values range from 0 (pure dust) to 1 (completely reacted); thus, it represents the conversion of CaCO3 into secondary salts. This mechanism should be used to better predict chemical dynamics in atmospheric models while also helping to further explain the importance of dust and secondary coating on cloud formation processes and dust optical properties. Air masses containing dust that traversed industrial China while mixing with polluted southern air had significantly higher DPI values (average = 0.82, 1σ = 0.10) compared to air masses that limited interaction with such pollution (average = 0.51, 1σ = 0.13). © 2020 Elsevier Ltd
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/160467
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, United States; Cooperative Institute for Research in Environmental Sciences and Department of Chemistry, University of Colorado, Boulder, CO, United States; Naval Research Laboratory, Monterey, CA, United States; Ludwig Maximilians University of Munich, Munich, Germany; NASA Langley Research Center, Hampton, VA, United States; California State University, San Bernardino, CA, United States; Colorado State University, Fort Collins, CO, United States

Recommended Citation:
Heim E.W.,Dibb J.,Scheuer E.,et al. Asian dust observed during KORUS-AQ facilitates the uptake and incorporation of soluble pollutants during transport to South Korea[J]. Atmospheric Environment,2020-01-01,224
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Heim E.W.]'s Articles
[Dibb J.]'s Articles
[Scheuer E.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Heim E.W.]'s Articles
[Dibb J.]'s Articles
[Scheuer E.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Heim E.W.]‘s Articles
[Dibb J.]‘s Articles
[Scheuer E.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.