globalchange  > 气候变化与战略
DOI: 10.1073/pnas.1620216114
论文题名:
Emergent magnetism at transition-metal-nanocarbon interfaces
作者: Ma'Mari F.A.; Rogers M.; Alghamdi S.; Moorsom T.; Lee S.; Prokscha T.; Luetkens H.; Valvidares M.; Teobaldif G.; Flokstra M.; Stewart R.; Gargiani P.; Ali M.; Burnell G.; Hickey B.J.; Cespedes O.
刊名: Proceedings of the National Academy of Sciences of the United States of America
ISSN: 0027-8424
出版年: 2017
卷: 114, 期:22
起始页码: 5583
结束页码: 5588
语种: 英语
Scopus关键词: carbon ; copper ; fullerene derivative ; manganese ; platinum ; transition element ; anisotropy ; Article ; circular dichroism ; degradation ; depolarization ; hybridization ; magnetic field ; magnetism ; magnetometry ; oscillation ; polarization ; priority journal ; roentgen spectroscopy
英文摘要: Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc-C60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo-carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are annealed into sp2.π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π∗-molecular levels, whereas the dichroism in the∗-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz-π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/163839
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Ma'Mari, F.A., School of Physics and Astronomy, University of Leeds, Leeds, LS29JT, United Kingdom, Department of Physics, Sultan Qaboos University, Muscat, 123, Oman; Rogers, M., School of Physics and Astronomy, University of Leeds, Leeds, LS29JT, United Kingdom; Alghamdi, S., School of Physics and Astronomy, University of Leeds, Leeds, LS29JT, United Kingdom; Moorsom, T., School of Physics and Astronomy, University of Leeds, Leeds, LS29JT, United Kingdom; Lee, S., School of Physics and Astronomy, Scottish Universities Physics Alliance, University of St. Andrews, St. Andrews, KY169SS, United Kingdom; Prokscha, T., Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, Villigen, 5232, Switzerland; Luetkens, H., Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, Villigen, 5232, Switzerland; Valvidares, M., Alba Synchrotron Light Source, Barcelona, E-08290, Spain; Teobaldif, G., Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool, L693BX, United Kingdom, Beijing Computational Science Research Centre, Beijing, 100193, China; Flokstra, M., School of Physics and Astronomy, Scottish Universities Physics Alliance, University of St. Andrews, St. Andrews, KY169SS, United Kingdom; Stewart, R., School of Physics and Astronomy, Scottish Universities Physics Alliance, University of St. Andrews, St. Andrews, KY169SS, United Kingdom; Gargiani, P., Alba Synchrotron Light Source, Barcelona, E-08290, Spain; Ali, M., School of Physics and Astronomy, University of Leeds, Leeds, LS29JT, United Kingdom; Burnell, G., School of Physics and Astronomy, University of Leeds, Leeds, LS29JT, United Kingdom; Hickey, B.J., School of Physics and Astronomy, University of Leeds, Leeds, LS29JT, United Kingdom; Cespedes, O., School of Physics and Astronomy, University of Leeds, Leeds, LS29JT, United Kingdom

Recommended Citation:
Ma'Mari F.A.,Rogers M.,Alghamdi S.,et al. Emergent magnetism at transition-metal-nanocarbon interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America,2017-01-01,114(22)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Ma'Mari F.A.]'s Articles
[Rogers M.]'s Articles
[Alghamdi S.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Ma'Mari F.A.]'s Articles
[Rogers M.]'s Articles
[Alghamdi S.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Ma'Mari F.A.]‘s Articles
[Rogers M.]‘s Articles
[Alghamdi S.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.