globalchange  > 气候变化与战略
DOI: 10.5194/tc-14-935-2020
论文题名:
Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions
作者: Marin C.; Bertoldi G.; Premier V.; Callegari M.; Brida C.; Hürkamp K.; Tschiersch J.; Zebisch M.; Notarnicola C.
刊名: Cryosphere
ISSN: 19940416
出版年: 2020
卷: 14, 期:3
起始页码: 935
结束页码: 956
语种: 英语
英文关键词: gliding ; image analysis ; melting ; meltwater ; radar ; ripening ; runoff ; Sentinel ; snow water equivalent ; snowmelt ; synthetic aperture radar ; temporal evolution ; water content ; Alps ; Bavaria ; Bavarian Alps ; Central Alps ; Germany ; Italy ; Switzerland ; Wetterstein Mountains ; Zugspitze
英文摘要: Knowing the timing and the evolution of the snow melting process is very important, since it allows the prediction of (i) the snowmelt onset, (ii) the snow gliding and wet-snow avalanches, (iii) the release of snow contaminants, and (iv) the runoff onset. The snowmelt can be monitored by jointly measuring snowpack parameters such as the snow water equivalent (SWE) or the amount of free liquid water content (LWC). However, continuous measurements of SWE and LWC are rare and difficult to obtain. On the other hand, active microwave sensors such as the synthetic aperture radar (SAR) mounted on board satellites are highly sensitive to LWC of the snowpack and can provide spatially distributed information with a high resolution. Moreover, with the introduction of Sentinel-1, SAR images are regularly acquired every 6 d over several places in the world. In this paper we analyze the correlation between the multitemporal SAR backscattering and the snowmelt dynamics. We compared Sentinel-1 backscattering with snow properties derived from in situ observations and process-based snow modeling simulations for five alpine test sites in Italy, Germany and Switzerland considering 2 hydrological years. We found that the multitemporal SAR measurements allow the identification of the three melting phases that characterize the melting process, i.e., moistening, ripening and runoff. In particular, we found that the C-band SAR backscattering decreases as soon as the snow starts containing water and that the backscattering increases as soon as SWE starts decreasing, which corresponds to the release of meltwater from the snowpack. We discuss the possible reasons of this increase, which are not directly correlated to the SWE decrease but to the different snow conditions, which change the backscattering mechanisms. Finally, we show a spatially distributed application of the identification of the runoff onset from SAR images for a mountain catchment, i.e., the Zugspitze catchment in Germany. Results allow us to better understand the spatial and temporal evolution of melting dynamics in mountain regions. The presented investigation could have relevant applications for monitoring and predicting the snowmelt progress over large regions. © 2020 Museum National d'Histoire Naturelle. All rights reserved.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/164531
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Institute for Earth Observation, Eurac Research, Viale Druso 1, Bolzano, 39100, Italy; Institute for Alpine Environment, Eurac Research, Viale Druso, 1, Bolzano, 39100, Italy; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Medicine, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany

Recommended Citation:
Marin C.,Bertoldi G.,Premier V.,et al. Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions[J]. Cryosphere,2020-01-01,14(3)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Marin C.]'s Articles
[Bertoldi G.]'s Articles
[Premier V.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Marin C.]'s Articles
[Bertoldi G.]'s Articles
[Premier V.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Marin C.]‘s Articles
[Bertoldi G.]‘s Articles
[Premier V.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.