globalchange  > 气候变化与战略
DOI: 10.5194/tc-15-3181-2021
论文题名:
Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach
作者: Mattea E.; MacHguth H.; Kronenberg M.; Van Pelt W.; Bassi M.; Hoelzle M.
刊名: Cryosphere
ISSN: 19940416
出版年: 2021
卷: 15, 期:7
起始页码: 3181
结束页码: 3205
语种: 英语
英文关键词: firn ; numerical model ; spatial resolution ; Colle Gnifetti Glacier
英文摘要: Our changing climate is expected to affect ice core records as cold firn progressively transitions to a temperate state. Thus, there is a need to improve our understanding and to further develop quantitative process modeling, to better predict cold firn evolution under a range of climate scenarios. Here we present the application of a distributed, fully coupled energy balance model, to simulate cold firn at the high-alpine glaciated saddle of Colle Gnifetti (Swiss-Italian Alps) over the period 2003-2018. We force the model with high-resolution, long-term, and extensively quality-checked meteorological data measured in the closest vicinity of the firn site, at the highest automatic weather station in Europe (Capanna Margherita, 4560 m a.s.l.). The model incorporates the spatial variability of snow accumulation rates and is calibrated using several partly unpublished high-altitude measurements from the Monte Rosa area. The simulation reveals a very good overall agreement in the comparison with a large archive of firn temperature profiles. Our results show that surface melt over the glaciated saddle is increasing by 3-4 mm w.e. yr-2 depending on the location (29 %-36 % in 16 years), although with large inter-annual variability. Analysis of modeled melt indicates the frequent occurrence of small melt events (<4 mm w.e.), which collectively represent a significant fraction of the melt totals. Modeled firn warming rates at 20 m depth are relatively uniform above 4450 m a.s.l. (0.4-0.5 C per decade). They become highly variable at lower elevations, with a marked dependence on surface aspect and absolute values up to 2.5 times the local rate of atmospheric warming. Our distributed simulation contributes to the understanding of the thermal regime and evolution of a prominent site for alpine ice cores and may support the planning of future core drilling efforts. Moreover, thanks to an extensive archive of measurements available for comparison, we also highlight the possibilities of model improvement most relevant to the investigation of future scenarios, such as the fixed-depth parametrized routine of deep preferential percolation. © Authors 2021
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/164756
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Department of Geosciences, University of Fribourg, Fribourg, Switzerland; Department of Earth Sciences, Uppsala University, Uppsala, Sweden; Department of Forecasting Systems, Regional Agency for Environmental Protection of Piedmont, Turin, Italy

Recommended Citation:
Mattea E.,MacHguth H.,Kronenberg M.,et al. Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach[J]. Cryosphere,2021-01-01,15(7)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Mattea E.]'s Articles
[MacHguth H.]'s Articles
[Kronenberg M.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Mattea E.]'s Articles
[MacHguth H.]'s Articles
[Kronenberg M.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Mattea E.]‘s Articles
[MacHguth H.]‘s Articles
[Kronenberg M.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.