globalchange  > 气候变化与战略
DOI: 10.1016/j.earscirev.2018.12.013
论文题名:
Aspects of the Archean-Proterozoic transition: How the great Huronian Glacial Event was initiated by rift-related uplift and terminated at the rift-drift transition during break-up of Lauroscandia
作者: Young G.M.
刊名: Earth Science Reviews
ISSN: 00128252
出版年: 2019
卷: 190
起始页码: 171
结束页码: 189
语种: 英语
英文关键词: Archean ; continental breakup ; glacial deposit ; glacier dynamics ; plate tectonics ; rifting ; tectonic evolution ; uplift ; Australia ; North America ; South Africa ; Western Australia
英文摘要: The Archean-Proterozoic transition was among the most important in geological history for it includes evidence of establishment of ‘modern-style’ plate tectonics, unprecedented paleoclimatic upheavals, and oxygenation of the atmosphere. The early Paleoproterozoic sedimentary record includes evidence of the world's first widespread glacial episodes, which have come to be known as the ‘Huronian Glacial Event’. None of these important changes coincides precisely with the accepted date of 2.5 Ga for the ‘boundary’ between the two great Precambrian eons. Rather, the geological record contains evidence of gradual transitions over many millions of years. For example the Archean sedimentary record in areas such as South Africa includes evidence of stable conditions (e.g. the Pongola Supergroup) that were not achieved in the Laurentian craton until much later during the Paleoproterozoic Era. The Pongola Supergroup in South Africa contains some of the world's oldest (c. 2.9 Ga) but locally developed glacial deposits. Many of these important changes are now considered to have been gradual and oscillatory in nature, including evidence of ‘whiffs of oxygen’ in Archean rocks, long before the Paleoproterozoic Great Oxidation Event. Oxidation of the oceans was also a long and extremely complex process, the details of which are still poorly understood. Glaciations near the beginning of the Paleoproterozoic Era have been considered by some to have been world-spanning ‘snowball Earth’ events. Repeated Huronian glaciations were probably brought about by weathering of Lauroscandia, the world's first ‘supercraton’ controlled by episodic rift-related uplifts during its disintegration. Among these glaciations only the third, represented by the Gowganda Formation and equivalents, was widespread throughout Lauroscandia. Because the two older glaciogenic units are known from only two locations in North America, their formation and preservation were probably controlled by local tectonic events. In like fashion, Paleoproterozoic glaciogenic units in South Africa and Western Australia appear to be local deposits from mountain glaciers formed during periods of tectonically generated (compressional?) uplift. The restricted distribution and diachronous nature of such tectonic events, and associated glaciogenic deposits, cast doubt on the viability of attempts at global correlations of individual Paleoproterozoic glaciogenic formations and on the existence of a Paleoproterozoic (or Neoproterozoic?) snowball Earth. © 2018 Elsevier B.V.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/165969
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Department of Earth Sciences, University of Western Ontario, London, ON N6A 5B7, Canada

Recommended Citation:
Young G.M.. Aspects of the Archean-Proterozoic transition: How the great Huronian Glacial Event was initiated by rift-related uplift and terminated at the rift-drift transition during break-up of Lauroscandia[J]. Earth Science Reviews,2019-01-01,190
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Young G.M.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Young G.M.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Young G.M.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.