globalchange  > 气候变化与战略
DOI: 10.1016/j.earscirev.2020.103169
论文题名:
Deconstructing South China and consequences for reconstructing Nuna and Rodinia
作者: Cawood P.A.; Wang W.; Zhao T.; Xu Y.; Mulder J.A.; Pisarevsky S.A.; Zhang L.; Gan C.; He H.; Liu H.; Qi L.; Wang Y.; Yao J.; Zhao G.; Zhou M.-F.; Zi J.-W.
刊名: Earth Science Reviews
ISSN: 00128252
出版年: 2020
卷: 204
语种: 英语
英文关键词: craton ; displacement ; granite ; igneous rock ; magmatism ; Mesozoic ; mineralization ; orogeny ; outcrop ; Proterozoic ; Rodinia ; sedimentary rock ; shear zone ; tectonics ; zircon ; Ailao Mountains ; Australia ; China ; Hainan ; India ; Siberia ; Yangtze Platform ; Yunnan
英文摘要: Contrasting models for internal and external locations of South China within the Nuna and Rodinia supercontinents can be resolved when the current lithotectonic associations of Mesoproterozoic and older rocks units that constitute the craton are redefined into four lithotectonic domains: Kongling, Kunming-Hainan, Wuyi, and Coastal. The Kongling and Kunming-Hainan domains are characterized by isolated Archean to early Paleoproterozoic rock units and events and crop out in northern and southern South China, respectively. The Kunming-Hainan Domain is preserved in three spatially separated regions at Kunming (southwestern South China), along the Ailaoshan shear zone, and within Hainan Island. Both domains were affected by late Paleoproterozoic tectonothermal events, indicating their likely juxtaposition by this time to form the proto-Yangtze Block. Late Paleoproterozoic and Mesoproterozoic sedimentary and igneous rock units developed on the proto-Yangtze Block, especially in its southern portions, and help link the rock units that formed along the shear zone at Ailaoshan and on Hainan Island into a single, spatially unified unit prior to Paleozoic to Cenozoic structural disaggregation and translation. The Wuyi Domain consists of late Paleoproterozoic rock units within a NE-SW trending, fault-bounded block in eastern South China. The Coastal Domain lies east of the Wuyi domain and is inferred to constitute a structurally separate block. Basement to the domain is not exposed, but zircon Hf model ages from Mesozoic granites suggest Mesoproterozoic basement at depth. The Archean to Paleoproterozoic tectonothermal record of the Kongling and Kunming-Hainan domains corresponds closely with that of NW Laurentia, suggesting all were linked, probably in association with assembly and subsequent partial fragmentation of the Nuna supercontinent. Furthermore, the age and character of Mesoproterozoic magmatism and detrital zircon signature of sedimentary rocks in the proto-Yangtze Block matches well with western Laurentia and eastern Australia-Antarctica. In particular, the detrital zircon signature of late Paleoproterozoic to early Mesoproterozoic sedimentary units in the block (e.g. Dongchuan Group) share a similar age spectrum with the Wernecke Supergroup of northwest Laurentia. This, together with similarities in the type and age of Fe-Cu mineralization in the domain with that in eastern Australia-Antarctica, especially northeast Australia, suggests a location adjacent to northwest Laurentia, southern Siberia, and northeast Australia within the Nuna supercontinent. The timing and character of late Paleoproterozoic magmatic activity in the Wuyi domain along with age of detrital zircons in associated sedimentary rocks matches the record of northern India. During rifting between Australia–Antarctica and Laurentia in the late Mesoproterozoic, the proto-Yangtze Block remained linked to northeast Australia. During accretionary orogenesis in the early Neoproterozoic, the proto-Yangtze Block assembled with the Wuyi Domain along the northern margin of India. The Coastal domain likely accreted at this time forming the South China Craton. Displacement of the Hainan and Ailaoshan assemblages from southwest of the Kunming assemblage likely occurred in the Cenozoic with the activation of the Ailaoshan-Red River fault system but could have begun in the early to mid-Paleozoic based on evidence for tectonothermal events in the Hainan assemblage. © 2020 Elsevier B.V.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/166030
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: School of Earth, Atmosphere & Environment, Monash University, Melbourne, VIC 3800, Australia; State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; Earth Dynamics Research Group, ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, Curtin University, Perth, 6845, Australia; Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033, Russian Federation; Guangdong Provincial Key Lab of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, 102249, China; State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Northern Taibai Str. 229, Xi'an, 710069, China; Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong

Recommended Citation:
Cawood P.A.,Wang W.,Zhao T.,et al. Deconstructing South China and consequences for reconstructing Nuna and Rodinia[J]. Earth Science Reviews,2020-01-01,204
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Cawood P.A.]'s Articles
[Wang W.]'s Articles
[Zhao T.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Cawood P.A.]'s Articles
[Wang W.]'s Articles
[Zhao T.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Cawood P.A.]‘s Articles
[Wang W.]‘s Articles
[Zhao T.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.