globalchange  > 气候变化与战略
DOI: 10.1007/s11069-019-03846-3
论文题名:
Microfracture propagation in gneiss through frost wedging: insights from an experimental study
作者: Musso Piantelli F.; Herwegh M.; Anselmetti F.S.; Waldvogel M.; Gruner U.
刊名: Natural Hazards
ISSN: 0921030X
出版年: 2020
卷: 100, 期:2
起始页码: 843
结束页码: 860
语种: 英语
中文关键词: Fracture propagation ; Frost wedging ; Low-porosity jointed rocks ; Rock bridges ; Wedging grains
英文关键词: anisotropy ; bridge ; experimental study ; fracture propagation ; freeze-thaw cycle ; gneiss ; joint ; weathering
英文摘要: Ice-driven mechanical weathering in mountainous environment is considered as an efficient process for slow but cyclical mechanical preconditioning of rockfall events. In this study, we simulate subcritical microfracture propagation under frost wedging conditions along pre-existing mechanical weaknesses of intact rock bridges with an innovative experimental approach. Two series of freeze–thaw experiments conducted in an environmental chamber were carried out to investigate and monitor the propagation of artificially induced fractures (AIF) in two twin gneiss samples. A displacement sensor recorded the sample’s in situ deformation in an environmental chamber during the experiments. 3D X-ray CT scans, performed before and after the experiments, as well as thin sections showing the post-experiment state of the deformed samples allowed tracking and quantification of fracture propagation. Our results demonstrate that frost wedging propagated the AIFs 1.25 cm2 and 3.5 cm2 after 42 and 87 freeze–thaw cycles, respectively. The experiments show that volumetric expansion of water upon freezing, cooperating with volumetric thermal expansion and contraction of the anisotropic rock, plays a key role in fracture widening and propagation. Based on these results, this study proposes that: (1) frost wedging exploits intrinsic pre-existing mechanical anisotropies of the rock; (2) the fracturing process is not continuous but alternates between stages of fast propagation and more quiet stages of stress accumulation; and (3) downward migration of “wedging grains,” stuck between the walls of the fracture, increases the tensile stress at the tip, widening and propagating the fractures with each freeze–thaw cycle. The experimental design developed in this study offers the chance to visualize and quantify the long-term efficiency of frost wedging in near-natural scenarios. © 2020, Springer Nature B.V.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/168647
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, Bern, 3012, Switzerland; Kellerhals und Häfeli AG, Kapellenstrasse 22, Bern, 3011, Switzerland; Oeschger Centre for Climate Change Research, Bern, Switzerland

Recommended Citation:
Musso Piantelli F.,Herwegh M.,Anselmetti F.S.,et al. Microfracture propagation in gneiss through frost wedging: insights from an experimental study[J]. Natural Hazards,2020-01-01,100(2)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Musso Piantelli F.]'s Articles
[Herwegh M.]'s Articles
[Anselmetti F.S.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Musso Piantelli F.]'s Articles
[Herwegh M.]'s Articles
[Anselmetti F.S.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Musso Piantelli F.]‘s Articles
[Herwegh M.]‘s Articles
[Anselmetti F.S.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.