globalchange  > 气候变化与战略
DOI: 10.1038/s41561-020-0544-y
论文题名:
Initial results from the InSight mission on Mars
作者: Banerdt W.B.; Smrekar S.E.; Banfield D.; Giardini D.; Golombek M.; Johnson C.L.; Lognonné P.; Spiga A.; Spohn T.; Perrin C.; Stähler S.C.; Antonangeli D.; Asmar S.; Beghein C.; Bowles N.; Bozdag E.; Chi P.; Christensen U.; Clinton J.; Collins G.S.; Daubar I.; Dehant V.; Drilleau M.; Fillingim M.; Folkner W.; Garcia R.F.; Garvin J.; Grant J.; Grott M.; Grygorczuk J.; Hudson T.; Irving J.C.E.; Kargl G.; Kawamura T.; Kedar S.; King S.; Knapmeyer-Endrun B.; Knapmeyer M.; Lemmon M.; Lorenz R.; Maki J.N.; Margerin L.; McLennan S.M.; Michaut C.; Mimoun D.; Mittelholz A.; Mocquet A.; Morgan P.; Mueller N.T.; Murdoch N.; Nagihara S.; Newman C.; Nimmo F.; Panning M.; Pike W.T.; Plesa A.-C.; Rodriguez S.; Rodriguez-Manfredi J.A.; Russell C.T.; Schmerr N.; Siegler M.; Stanley S.; Stutzmann E.; Teanby N.; Tromp J.; van Driel M.; Warner N.; Weber R.; Wieczorek M.
刊名: Nature Geoscience
ISSN: 17520894
出版年: 2020
卷: 13, 期:3
起始页码: 183
结束页码: 189
语种: 英语
英文关键词: crater ; geology ; magnetic field ; magnetometer ; Mars ; satellite mission ; thermal evolution
英文摘要: NASA’s InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission landed in Elysium Planitia on Mars on 26 November 2018. It aims to determine the interior structure, composition and thermal state of Mars, as well as constrain present-day seismicity and impact cratering rates. Such information is key to understanding the differentiation and subsequent thermal evolution of Mars, and thus the forces that shape the planet’s surface geology and volatile processes. Here we report an overview of the first ten months of geophysical observations by InSight. As of 30 September 2019, 174 seismic events have been recorded by the lander’s seismometer, including over 20 events of moment magnitude Mw = 3–4. The detections thus far are consistent with tectonic origins, with no impact-induced seismicity yet observed, and indicate a seismically active planet. An assessment of these detections suggests that the frequency of global seismic events below approximately Mw = 3 is similar to that of terrestrial intraplate seismic activity, but there are fewer larger quakes; no quakes exceeding Mw = 4 have been observed. The lander’s other instruments—two cameras, atmospheric pressure, temperature and wind sensors, a magnetometer and a radiometer—have yielded much more than the intended supporting data for seismometer noise characterization: magnetic field measurements indicate a local magnetic field that is ten-times stronger than orbital estimates and meteorological measurements reveal a more dynamic atmosphere than expected, hosting baroclinic and gravity waves and convective vortices. With the mission due to last for an entire Martian year or longer, these results will be built on by further measurements by the InSight lander. © 2020, Springer Nature Limited.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/169549
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States; Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY, United States; Institute of Geophysics, ETH Zurich, Zurich, Switzerland; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada; Planetary Science Institute, Tucson, AZ, United States; Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, France; Institut Universitaire de France, Paris, France; Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), École Polytechnique, École Normale Supérieure (ENS), Paris, France; German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany; Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France; Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States; Lunar and Planetary Institute, Universities Space Research Association, Houston, TX, United States; Department of Physics, University of Oxford, Oxford, United Kingdom; Department of Geophysics, Colorado School of Mines, Golden, CO, United States; Max Planck Institute for Solar System Research, Göttingen, Germany; Department of Earth Science and Engineering, Imperial College London, London, United Kingdom; Royal Observatory of Belgium, Directorate “Reference Systems and Planetology”, Brussels, Belgium; Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium; Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, United States; Institut Supérieur de l’Aéronautique et de l’Espace SUPAERO, Toulouse, France; NASA Goddard Space Flight Center, Greenbelt, MD, United States; Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, United States; Astronika Sp. z o.o., Warsaw, Poland; Department of Geosciences, Princeton University, Princeton, NJ, United States; Space Research Institute, Austrian Academy of Sciences (ÖAW), Graz, Austria; Department of Geosciences, Virginia Tech, Blacksburg, VA, United States; Bensberg Observatory, University of Cologne, Bergisch Gladbach, Germany; Space Science Institute, Boulder, CO, United States; Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States; Institut de Recherche en Astrophysique et Planétologie, Université Toulouse III Paul Sabatier, CNRS, CNES, Toulouse, France; Department of Geosciences, Stony Brook University, Stony Brook, NY, United States; Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement, Université de Lyon, École Normale Supérieure de Lyon, UCBL, CNRS, Lyon, France; Laboratoire de Planétologie et Géodynamique, UMR6112, Université de Nantes, Université d’Angers, CNRS, Nantes, France; Colorado Geological Survey, Wilsonville, OR, United States; Department of Geosciences, Texas Tech University, Lubbock, TX, United States; Aeolis Research, Chandler, AZ, United States; Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom; Centro de Astrobiología, CSIC‐INTA, Madrid, Spain; Department of Geology, University of Maryland, College Park, MD, United States; Department of Earth Sciences, Southern Methodist University, Dallas, TX, United States; Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, United States; School of Earth Sciences, University of Bristol, Bristol, United Kingdom; Department of Geological Sciences, State University of New York at Geneseo, Geneseo, NY, United States; NASA Marshall Space Flight Center (MSFC), Huntsville, AL, United States; Université Côte d’Azur, Laboratoire Lagrange, Observatoire de la Côte d’Azur, CNRS, Nice, France

Recommended Citation:
Banerdt W.B.,Smrekar S.E.,Banfield D.,et al. Initial results from the InSight mission on Mars[J]. Nature Geoscience,2020-01-01,13(3)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Banerdt W.B.]'s Articles
[Smrekar S.E.]'s Articles
[Banfield D.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Banerdt W.B.]'s Articles
[Smrekar S.E.]'s Articles
[Banfield D.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Banerdt W.B.]‘s Articles
[Smrekar S.E.]‘s Articles
[Banfield D.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.