globalchange  > 气候变化与战略
DOI: 10.1038/s41561-020-0537-x
论文题名:
Crustal and time-varying magnetic fields at the InSight landing site on Mars
作者: Johnson C.L.; Mittelholz A.; Langlais B.; Russell C.T.; Ansan V.; Banfield D.; Chi P.J.; Fillingim M.O.; Forget F.; Haviland H.F.; Golombek M.; Joy S.; Lognonné P.; Liu X.; Michaut C.; Pan L.; Quantin-Nataf C.; Spiga A.; Stanley S.; Thorne S.N.; Wieczorek M.A.; Yu Y.; Smrekar S.E.; Banerdt W.B.
刊名: Nature Geoscience
ISSN: 17520894
出版年: 2020
卷: 13, 期:3
起始页码: 199
结束页码: 204
语种: 英语
英文关键词: basement rock ; electrical conductivity ; frequency analysis ; ionosphere ; lava flow ; magnetic field ; magnetization ; Mars ; seismic data ; wave propagation
英文摘要: Magnetic fields provide a window into a planet’s interior structure and evolution, including its atmospheric and space environments. Satellites at Mars have measured crustal magnetic fields indicating an ancient dynamo. These crustal fields interact with the solar wind to generate transient fields and electric currents in Mars’s upper atmosphere. Surface magnetic field data play a key role in understanding these effects and the dynamo. Here we report measurements of magnetic field strength and direction at the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) landing site on Mars. We find that the field is ten times stronger than predicted by satellite-based models. We infer magnetized rocks beneath the surface, within ~150 km of the landing site, consistent with a past dynamo with Earth-like strength. Geological mapping and InSight seismic data suggest that much or all of the magnetization sources are carried in basement rocks, which are at least 3.9 billion years old and are overlain by between 200 m and ~10 km of lava flows and modified ancient terrain. Daily variations in the magnetic field indicate contributions from ionospheric currents at 120 km to 180 km altitude. Higher-frequency variations are also observed; their origin is unknown, but they probably propagate from even higher altitudes to the surface. We propose that the time-varying fields can be used to investigate the electrical conductivity structure of the martian interior. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/169625
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada; Planetary Science Institute, Tucson, AZ, United States; Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Université de Nantes, Université d’Angers, CNRS, Nantes, France; Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, United States; Cornell Center for Astrophysics and Planetary Science, Ithaca, NY, United States; Space Sciences Laboratory, University of California, Berkeley, CA, United States; Laboratoire de Météorologie Dynamique / Institut Pierre-Simon Laplace (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), École Polytechnique, École Normale Supérieure (ENS), Campus Pierre et Marie Curie BC99, Paris, France; Marshall Space Flight Center, Huntsville, AL, United States; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States; Université Paris Diderot-Sorbonne Paris Cité, Institut de Physique du Globe de Paris, Paris, France; Université de Lyon, École Normale Supérieure de Lyon, UCBL, CNRS, Laboratoire de Géologie de Lyon -Terre, Planètes, Environnement, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR 5276 Laboratoire de Géologie de Lyon -Terre, Planètes, Environnement, Villeurbanne, France; Institut Universitaire de France (IUF), Paris, France; Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, United States; Applied Physics Lab, Johns Hopkins University, Laurel, MD, United States; Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France

Recommended Citation:
Johnson C.L.,Mittelholz A.,Langlais B.,et al. Crustal and time-varying magnetic fields at the InSight landing site on Mars[J]. Nature Geoscience,2020-01-01,13(3)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Johnson C.L.]'s Articles
[Mittelholz A.]'s Articles
[Langlais B.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Johnson C.L.]'s Articles
[Mittelholz A.]'s Articles
[Langlais B.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Johnson C.L.]‘s Articles
[Mittelholz A.]‘s Articles
[Langlais B.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.