globalchange  > 气候变化与战略
DOI: 10.1016/j.tecto.2020.228550
论文题名:
On the rotation and frictional lock-up of normal faults: Explaining the dip distribution of normal fault earthquakes and resolving the low-angle normal fault paradox
作者: Reston T.
刊名: Tectonophysics
ISSN: 00401951
出版年: 2020
卷: 790
语种: 英语
中文关键词: Detachment faults ; Earthquakes ; Normal faulting ; Rifting ; Rock mechanics
英文关键词: Earthquakes ; Friction ; Locks (fasteners) ; Rock mechanics ; Rotation ; Distributed strain ; Fault reactivation ; Field observations ; Fluid pressures ; Normal faults ; Quantitative modeling ; Shallow subsurface ; Stress rotation ; Fault slips ; Coulomb criterion ; earthquake mechanism ; friction ; mechanical property ; Mohr theory ; normal fault ; rotation ; rupture
英文摘要: Classical rock mechanics predicts that normal faults should form at 60–65°, rotating to 30–40° before locking, so widespread slip at around 20° is considered paradoxical. Furthermore, the dip distribution of normal fault earthquakes has a distinct, unexplained peak at ~45°. For both problems, some combination of low friction, high fluid pressures, stress rotation and efficiency of low-angle slip have been suggested but provide at best a partial solution. A simple quantitative model for normal fault rotation (iterating between slip on faults and distributed strain) predicts that faults spend more time at lower angles. Combining this result with Mohr-Coulomb analysis of the range where seismogenic normal faults should lock up predicts the dip distribution of seismogenic normal faults and matches both the range and 45° peak observed for normal fault earthquakes. As even the lowest dips of normal fault ruptures fall within the limits of fault reactivation, slip on seismogenic low-angle normal faults is not paradoxical. A new Mohr-Griffith solution to the limits of fault reactivation extends the analysis into the top few km, where low-angle slip is best constrained by field observations, and shows that low cohesion normal faults can remain active at <20° without recourse to very low friction, high fluid pressures or stress rotation. This analysis thus resolves the long-standing paradox of slip on low-angle normal faults. Where continued rotation or changes in mechanical properties cause low-angle faults to lock in the shallow subsurface, a new fault propagates upward from the point of lock-up, transferring a hanging wall slice to the footwall, to be rafted up and out as a rider block. By recording the dip/depth of lock-up, riders atop detachments constrain the mechanics of faulting and of lock-up. © 2020 Elsevier B.V.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/170693
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom

Recommended Citation:
Reston T.. On the rotation and frictional lock-up of normal faults: Explaining the dip distribution of normal fault earthquakes and resolving the low-angle normal fault paradox[J]. Tectonophysics,2020-01-01,790
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Reston T.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Reston T.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Reston T.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.