globalchange  > 过去全球变化的重建
DOI: 10.1371/journal.pone.0115659
论文题名:
A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts
作者: Guillaume Bal; Etienne Rivot; Jean-Luc Baglinière; Jonathan White; Etienne Prévost
刊名: PLOS ONE
ISSN: 1932-6203
出版年: 2014
发表日期: 2014-12-26
卷: 9, 期:12
语种: 英语
英文关键词: Surface water ; Forecasting ; Rivers ; Linear regression analysis ; Climate change ; Fresh water ; Seasons ; Freshwater ecology
英文摘要: Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i) an emotive simulated example, ii) application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.
URL: http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0115659&type=printable
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/17767
Appears in Collections:过去全球变化的重建
影响、适应和脆弱性
科学计划与规划
气候变化与战略
全球变化的国际研究计划
气候减缓与适应
气候变化事实与影响

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
journal.pone.0115659.PDF(1769KB)期刊论文作者接受稿开放获取View Download

作者单位: INRA, UMR 0985 ESE Ecologie et Santé des Ecosystèmes, Rennes, France;Marine Institute, Oranmore, Ireland;Agrocampus Ouest, UMR 0985 ESE Ecologie et Santé des Ecosystèmes, Rennes, France;INRA, UMR 0985 ESE Ecologie et Santé des Ecosystèmes, Rennes, France;Marine Institute, Oranmore, Ireland;INRA, UMR 1224 Ecobiop Ecologie Comportementale et Biologie des Populations de Poissons, Saint Pée sur Nivelle, France;Université de Pau et des Pays de l′Adour, UMR 1224 Ecobiop Ecologie Comportementale et Biologie des Populations de Poissons, Anglet, France

Recommended Citation:
Guillaume Bal,Etienne Rivot,Jean-Luc Baglinière,et al. A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts[J]. PLOS ONE,2014-01-01,9(12)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Guillaume Bal]'s Articles
[Etienne Rivot]'s Articles
[Jean-Luc Baglinière]'s Articles
百度学术
Similar articles in Baidu Scholar
[Guillaume Bal]'s Articles
[Etienne Rivot]'s Articles
[Jean-Luc Baglinière]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Guillaume Bal]‘s Articles
[Etienne Rivot]‘s Articles
[Jean-Luc Baglinière]‘s Articles
Related Copyright Policies
Null
收藏/分享
文件名: journal.pone.0115659.PDF
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.