globalchange  > 过去全球变化的重建
DOI: 10.2172/1050675
报告号: LBNL-4866E
报告题名:
China Energy and Emissions Paths to 2030
作者: Napier, Bruce A.; Droppo, James G.; Rishel, Jeremy P.
出版年: 2011
发表日期: 2011-01-14
总页数: 111
国家: 美国
语种: 英语
中文主题词: ; 排放物 ; 电力 ;
主题词: CARBON ; EMISSIONS ; ELECTRICITY ; IRON
英文摘要: After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier under Max Tech, though the 2020s is a likely turning point for both emission trajectories. Both emission pathways must meet all announced and planned policies, targets and non-fossil generation targets, or an even wider efficiency gap will exist. The savings potential under Max Tech varies by sector, but the industrial sector appears to hold the largest energy savings and emission reduction potential. The primary source of savings is from electricity rather than fuel, and electricity savings are magnified by power sector decarbonization through increasing renewable generation and coal generation efficiency improvement. In order to achieve the maximum energy savings and emission reduction potential, efficiency improvements and technology switching must be undertaken across demand sectors as well as in the growing power sector. From an economic perspective, the cost of conserved energy analysis indicates that nearly all measures for the iron and steel and cement industry are cost-effective. All 23 efficiency measures analyzed for the cement industry are cost-effective, with combined CO2 emission reduction potential of 448 Mt CO2. All of the electricity savings measures in the iron and steel industry are cost-effective, but the cost-effective savings potential for fuel savings measures is slightly lower than total technical savings potential. The total potential savings from these measures confirm the magnitude of savings in the scenario models, and illustrate the remaining efficiency gap in the cement and iron and steel industries.
URL: http://www.osti.gov/scitech/servlets/purl/1050675
Citation statistics:
资源类型: 研究报告
标识符: http://119.78.100.158/handle/2HF3EXSE/40345
Appears in Collections:过去全球变化的重建
影响、适应和脆弱性
科学计划与规划
气候变化与战略
全球变化的国际研究计划
气候减缓与适应
气候变化事实与影响

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
1050675.pdf(2191KB)研究报告--开放获取View Download

Recommended Citation:
Napier, Bruce A.,Droppo, James G.,Rishel, Jeremy P.. China Energy and Emissions Paths to 2030. 2011-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Napier, Bruce A.]'s Articles
[Droppo, James G.]'s Articles
[Rishel, Jeremy P.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Napier, Bruce A.]'s Articles
[Droppo, James G.]'s Articles
[Rishel, Jeremy P.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Napier, Bruce A.]‘s Articles
[Droppo, James G.]‘s Articles
[Rishel, Jeremy P.]‘s Articles
Related Copyright Policies
Null
收藏/分享
文件名: 1050675.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.