globalchange  > 过去全球变化的重建
DOI: 10.2172/1084029
报告号: None
报告题名:
Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01
作者: Lindberg, Michael J.
出版年: 2011
发表日期: 2011-06-30
国家: 美国
语种: 英语
中文主题词: 导热系数 ; 高温 ; 沉降 ; 沉积物 ; 热导率 ; 水深 ; 沉积作用 ; 声速 ; 平流热效 ; 导电性 ; 密度 ; 甲烷 ; 速度 ; 天然气水合物 ; 构造地质学
主题词: THERMAL CONDUCTIVITY ; HEAT ; SEDIMENTATION ; SEDIMENTS ; WATER DEPTH ; ACOUSTIC VELOCITY ; ADVECTION ; CONDUCTIVITY ; DENSITY ; METHANE ; VELOCITY ; GAS HYDRATES ; TECTONICS
英文摘要: The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those ~70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the KG basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m2. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of global observations from forearc basins, possibly because of unusually high regional sedimentation rates and a high rate of tectonic deformation. In addition to providing an opportunity to follow up on preliminary results from NGHP-01, which was partially funded by DOE to increase understanding of submarine gas hydrates, a primary objective of this project was to provide training for a graduate student who had participated in the data acquisition as a technician. Our approach was to start with very simple analytic models to develop intuition about the relative importance of different parameters both as a learning exercise and to evaluate whether a more complex modeling effort could be constrained by the existing data.
URL: http://www.osti.gov/scitech/servlets/purl/1084029
Citation statistics:
资源类型: 研究报告
标识符: http://119.78.100.158/handle/2HF3EXSE/40391
Appears in Collections:过去全球变化的重建
影响、适应和脆弱性
科学计划与规划
气候变化与战略
全球变化的国际研究计划
气候减缓与适应
气候变化事实与影响

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
1084029.pdf(2579KB)研究报告--开放获取View Download

Recommended Citation:
Lindberg, Michael J.. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01. 2011-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Lindberg, Michael J.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Lindberg, Michael J.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Lindberg, Michael J.]‘s Articles
Related Copyright Policies
Null
收藏/分享
文件名: 1084029.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.