globalchange  > 过去全球变化的重建
DOI: 10.2172/1166937
报告号: DOE-Temple--ER14644
报告题名:
Final Technical Report. Reactivity of Iron-Bearing Minerals and CO<sub>2 </sub>Sequestration and Surface Chemistry of Pyrite. An Interdisciplinary Approach
作者: Strongin, Daniel
出版年: 2014
发表日期: 2014-12-31
总页数: 12
国家: 美国
语种: 英语
英文关键词: supercritical CO2 ; siderite ; CO2 sequestration ; pyrite ; AMD ; phospholipid ; surface reactivity
中文主题词: 硫磺 ; 矿井排水 ; ; 矿物 ; 排水
主题词: SULFUR ; MINE DRAINAGE ; IRON ; MINERALS ; DRAINAGE
英文摘要: Over the course of the scientific program, two areas of research were pursued: reactions of iron oxides with supercritical CO2 and sulfide and surface reactivity of pyrite. The latter area of interest was to understand the chemistry that results when supercritical CO2 (scCO2 ) with H2 S and/or SO2 in deep saline formations (DFS) contacts iron bearing minerals. Understanding the complexities the sulfur co-injectants introduce is a critical step in developing CO2 sequestration as a climate-mitigating strategy. The research strategy was to understand macroscopic observations of this chemistry with an atomic/molecular level view using surface analytical techniques. Research showed that the exposure of iron (oxyhdr)oxides (which included ferrihydrite, goethite, and hematite) to scCO2 in the presence of sulfide led to reactions that formed siderite (FeCO3). The results have important implications for the sequestration of CO2 via carbonation reactions in the Earth’s subsurface. An earlier area of focus in the project was to understand pyrite oxidation in microscopic detail. This understanding was used to understand macroscopic observations of pyrite reactivity. Results obtained from this research led to a better understanding how pyrite reacts in a range of chemical environments. Geochemical and modern surface science techniques were used to understand the chemistry of pyrite in important environmental conditions. The program relied on a strong integration the results of these techniques to provide a fundamental understanding to the macroscopic chemistry exhibited by pyrite in the environment. Major achievements during these studies included developing an understanding of the surface sites on pyrite that controlled its reactivity under oxidizing conditions. In particular sulfur anion vacancies and/or ferric sites were sites of reactivity. Studies also showed that the adsorption of phospholipid on the surface to selectively suppress the reactivity of these sites could of potential importance for suppressing acid mine drainage in the environment (a problem common to coal-mining sites). Biotic studies showed that microbial activity that promotes the oxidation of pyrite to produce AMD could also be suppressed by the adsorption of phospholipid.
URL: http://www.osti.gov/scitech/servlets/purl/1166937
Citation statistics:
资源类型: 研究报告
标识符: http://119.78.100.158/handle/2HF3EXSE/41317
Appears in Collections:过去全球变化的重建
影响、适应和脆弱性
科学计划与规划
气候变化与战略
全球变化的国际研究计划
气候减缓与适应
气候变化事实与影响

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
1166937.pdf(1117KB)研究报告--开放获取View Download

作者单位: Temple Univ., Philadelphia, PA (United States)

Recommended Citation:
Strongin, Daniel. Final Technical Report. Reactivity of Iron-Bearing Minerals and CO<sub>2 </sub>Sequestration and Surface Chemistry of Pyrite. An Interdisciplinary Approach. 2014-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Strongin, Daniel]'s Articles
百度学术
Similar articles in Baidu Scholar
[Strongin, Daniel]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Strongin, Daniel]‘s Articles
Related Copyright Policies
Null
收藏/分享
文件名: 1166937.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.