globalchange  > 气候变化与战略
DOI: 10.5194/cp-13-1049-2017
Scopus记录号: 2-s2.0-85028046721
论文题名:
The C32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins
作者: Lattaud J.; Dorhout D.; Schulz H.; Castañeda I.S.; Schefuß E.; Damsté J.S.S.; Schouten S.
刊名: Climate of the Past
ISSN: 18149324
出版年: 2017
卷: 13, 期:8
起始页码: 1049
结束页码: 1061
语种: 英语
英文摘要: The study of past sedimentary records from coastal margins allows us to reconstruct variations in terrestrial input into the marine realm and to gain insight into continental climatic variability. There are numerous organic proxies for tracing terrestrial input into marine environments but none that strictly reflect the input of river-produced organic matter. Here, we test the fractional abundance of the C32 alkane 1,15-diol relative to all 1,13- and 1,15-long-chain diols (FC321, 15) as a tracer of input of river-produced organic matter in the marine realm in surface and Quaternary (0-45ka) sediments on the shelf off the Zambezi and nearby smaller rivers in the Mozambique Channel (western Indian Ocean). A Quaternary (0-22ka) sediment record off the Nile River mouth in the eastern Mediterranean was also studied for long-chain diols. For the Mozambique Channel, surface sediments of sites most proximal to Mozambique rivers showed the highest F1, 15 - C32 (up to 10%). The sedimentary record shows high (15-35%) pre-Holocene F1, 15 - C32 and low (<10%) Holocene F1, 15 - C32 values, with a major decrease between 18 and 12ka. F1, 15 - C32 is significantly correlated (r2 Combining double low line 0.83, p<0.001) with the branched and isoprenoid tetraether (BIT) index, a proxy for the input of soil and river-produced organic matter in the marine environment, which declines from 0.25 to 0.60 for the pre-Holocene to <0.10 for the Holocene. This decrease in both FC321, 15 and the BIT is interpreted to be mainly due to rising sea level, which caused the Zambezi River mouth to become more distal to our study site, thereby decreasing riverine input at the core location. Some small discrepancies are observed between the records of the BIT index and FC321, 15 for Heinrich Event 1 (H1) and the Younger Dryas (YD), which may be explained by a change in soil sources in the catchment area rather than a change in river influx. Like for the Mozambique Channel, a significant correlation between FC321, 15 and the BIT index (r2 Combining double low line 0.38, p<0.001) is observed for the eastern Mediterranean Nile record. Here also, the BIT index and FC321, 15 are lower in the Holocene than in the pre-Holocene, which is likely due to the sea level rise. In general, the differences between the BIT index and FC321, 15 eastern Mediterranean Nile records can be explained by the fact that the BIT index is not only affected by riverine runoff but also by vegetation cover with increasing cover leading to lower soil erosion. Our results confirm that FC321, 15 is a complementary proxy for tracing riverine input of organic matter into marine shelf settings, and, in comparison with other proxies, it seems not to be affected by soil and vegetation changes in the catchment area.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/48890
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Lattaud J.,Dorhout D.,Schulz H.,et al. The C32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins[J]. Climate of the Past,2017-01-01,13(8)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Lattaud J.]'s Articles
[Dorhout D.]'s Articles
[Schulz H.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Lattaud J.]'s Articles
[Dorhout D.]'s Articles
[Schulz H.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Lattaud J.]‘s Articles
[Dorhout D.]‘s Articles
[Schulz H.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.