globalchange  > 气候变化与战略
DOI: 10.5194/cp-9-1789-2013
Scopus记录号: 2-s2.0-84881400067
论文题名:
The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3
作者: Nikolova I.; Yin Q.; Berger A.; Singh U.K.; Karami M.P.
刊名: Climate of the Past
ISSN: 18149324
出版年: 2013
卷: 9, 期:4
起始页码: 1789
结束页码: 1806
语种: 英语
Scopus关键词: climate modeling ; Eemian ; global perspective ; hydrological cycle ; insolation ; Last Interglacial ; monsoon ; paleoclimate ; sea ice ; surface temperature ; thermocline ; Africa ; Arabian Peninsula ; India ; Sahel [Sub-Saharan Africa]
英文摘要: This paper presents a detailed analysis of the climate of the last interglacial simulated by two climate models of different complexities, CCSM3 (Community Climate System Model 3) and LOVECLIM (LOch-Vecode-Ecbilt-CLio-agIsm Model). The simulated surface temperature, hydrological cycle, vegetation and ENSO variability during the last interglacial are analyzed through the comparison with the simulated pre-industrial (PI) climate. In both models, the last interglacial period is characterized by a significant warming (cooling) over almost all the continents during boreal summer (winter) leading to a largely increased (reduced) seasonal contrast in the Northern (Southern) Hemisphere. This is mainly due to the much higher (lower) insolation received by the whole Earth in boreal summer (winter) during this interglacial. The Arctic is warmer than PI through the whole year, resulting from its much higher summer insolation, its remnant effect in the following fall-winter through the interactions between atmosphere, ocean and sea ice and feedbacks from sea ice and snow cover. Discrepancies exist in the sea-ice formation zones between the two models. Cooling is simulated by CCSM3 in the Greenland and Norwegian seas and near the shelves of Antarctica during DJF but not in LOVECLIM as a result of excessive sea-ice formation. Intensified African monsoon is responsible for the cooling during summer in northern Africa and on the Arabian Peninsula. Over India, the precipitation maximum is found further west, while in Africa the precipitation maximum migrates further north. Trees and grassland expand north in Sahel/Sahara, more clearly seen in LOVECLIM than in CCSM3 results. A mix of forest and grassland occupies continents and expands deep into the high northern latitudes. Desert areas reduce significantly in the Northern Hemisphere, but increase in northern Australia. The interannual SST variability of the tropical Pacific (El-Niño Southern Oscillation) of the last interglacial simulated by CCSM3 shows slightly larger variability and magnitude compared to the PI. However, the SST variability in our LOVECLIM simulations is particularly small due to the overestimated thermocline's depth. © Author(s) 2013. CC Attribution 3.0 License.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/49418
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Nikolova I.,Yin Q.,Berger A.,et al. The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3[J]. Climate of the Past,2013-01-01,9(4)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Nikolova I.]'s Articles
[Yin Q.]'s Articles
[Berger A.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Nikolova I.]'s Articles
[Yin Q.]'s Articles
[Berger A.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Nikolova I.]‘s Articles
[Yin Q.]‘s Articles
[Berger A.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.