globalchange  > 气候变化事实与影响
DOI: 10.1175/JCLI-D-16-0343.1
Scopus记录号: 2-s2.0-85010843632
论文题名:
Spatiotemporal temperature variability over the Tibetan Plateau: Altitudinal dependence associated with the global warming hiatus
作者: Cai D.; You Q.; Fraedrich K.; Guan Y.
刊名: Journal of Climate
ISSN: 8948755
出版年: 2017
卷: 30, 期:3
起始页码: 969
结束页码: 984
语种: 英语
Scopus关键词: Complex networks ; Global warming ; Meteorology ; Radiometers ; Remote sensing ; Global climate changes ; Meteorological station ; Mountainous regions ; Nighttime temperatures ; Regional climate changes ; Regional effects ; Temperature changes ; Temperature variability ; Climate change ; altitude ; climate change ; climate effect ; global warming ; MODIS ; regional climate ; remote sensing ; spatiotemporal analysis ; temperature anomaly ; China ; Qinghai-Xizang Plateau
英文摘要: The recent slowdown in global warming has initiated a reanalysis of temperature data in some mountainous regions for understanding the consequences and impact that a hiatus has on the climate system. Spatiotemporal temperature variability is analyzed over the Tibetan Plateau because of its sensitivity to climate change with a station network updated to 2014, and its linkages to remote sensing-based variability of MODIS daytime and nighttime temperature are investigated. Results indicate the following: 1) Almost all stations have experienced a notable warming in the time interval 1961-2014, with most obvious warming in winter, which depends on the selected time intervals. 2) There is no clear shift from a predominant warming to a near stagnation during the most recent period (2001-present). 3) Uniform altitudinal dependence of temperature change trends could not be confirmed for all regions, time intervals, and seasons, but sometimes an altitude threshold around 3 km is apparent. 4) Most of the meteorological stations are associated with MODIS temperature warming pixels, and thus regional cooling is missing when considering only the locations of meteorological stations. In summarizing, previous studies based on station observations do not provide a complete picture for the temperature change over the Tibetan Plateau. Remote sensing-based analyses have the potential to find early signals of regional climate changes and assess the impact of global climate changes in complex regional, seasonal, and altitudinal environments.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/49743
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China; Max-Planck-Institute for Meteorology, Hamburg, Germany

Recommended Citation:
Cai D.,You Q.,Fraedrich K.,et al. Spatiotemporal temperature variability over the Tibetan Plateau: Altitudinal dependence associated with the global warming hiatus[J]. Journal of Climate,2017-01-01,30(3)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Cai D.]'s Articles
[You Q.]'s Articles
[Fraedrich K.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Cai D.]'s Articles
[You Q.]'s Articles
[Fraedrich K.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Cai D.]‘s Articles
[You Q.]‘s Articles
[Fraedrich K.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.