DOI: 10.1175/JCLI-D-15-0384.1
Scopus记录号: 2-s2.0-84957831209
论文题名: Unforced surface air temperature variability and its contrasting relationship with the anomalous TOA energy flux at local and global spatial scales
作者: Brown P.T. ; Li W. ; Jiang J.H. ; Su H.
刊名: Journal of Climate
ISSN: 8948755
出版年: 2016
卷: 29, 期: 3 起始页码: 925
结束页码: 940
语种: 英语
Scopus关键词: Climatology
; Feedback
; Greenhouse effect
; Meteorology
; Radiation effects
; Sea ice
; Solar radiation
; Surface properties
; Tropics
; Cloud radiative effects
; EL Nino
; Interannual variability
; Long-wave radiation
; Surface temperatures
; Variability
; Atmospheric temperature
; air temperature
; albedo
; cloud radiative forcing
; El Nino
; energy flux
; longwave radiation
; surface temperature
; Pacific Ocean
; Pacific Ocean (Tropical)
英文摘要: Unforced global mean surface air temperature (T) is stable in the long term primarily because warm T anomalies are associated with enhanced outgoing longwave radiation (↑LW) to space and thus a negative net radiative energy flux (N, positive downward) at the top of the atmosphere (TOA). However, it is shown here that, with the exception of high latitudinal and specific continental regions, warm unforced surface air temperature anomalies at the local spatial scale [T(θ, φ), where (θ, φ) = (latitude, longitude)] tend to be associated with anomalously positive N(θ, φ). It is revealed that this occurs mainly because warm T(θ, φ) anomalies are accompanied by anomalously low surface albedo near sea ice margins and over high altitudes, low cloud albedo over much of the middle and low latitudes, and a large water vapor greenhouse effect over the deep Indo-Pacific. It is shown here that the negative N versus T relationship arises because warm anomalies are associated with large divergence of atmospheric energy transport over the tropical Pacific [where the N(θ, φ) versus T(θ, φ) relationship tends to be positive] and convergence of atmospheric energy transport at high latitudes [where the N(θ, φ) versus T(θ, φ) relationship tends to be negative]. Additionally, the characteristic surface temperature pattern contains anomalously cool regions where a positive local N(θ, φ) versus T(θ, φ) relationship helps induce negative N. Finally, large-scale atmospheric circulation changes play a critical role in the production of the negative N versus T relationship as they drive cloud reduction and atmospheric drying over large portions of the tropics and subtropics, which allows for greatly enhanced ↑LW. © 2016 American Meteorological Society.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/50055
Appears in Collections: 气候变化事实与影响
There are no files associated with this item.
作者单位: Nicholas School of the Environment, Duke University, Durham, NC, United States; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Recommended Citation:
Brown P.T.,Li W.,Jiang J.H.,et al. Unforced surface air temperature variability and its contrasting relationship with the anomalous TOA energy flux at local and global spatial scales[J]. Journal of Climate,2016-01-01,29(3)