globalchange  > 影响、适应和脆弱性
DOI: 10.1002/jgrd.50689
Sensitivity of stratospheric dynamics to uncertainty in O<inf>3</inf> production
Author: Hsu J.; Prather M.J.; Bergmann D.; Cameron-Smith P.
Source Publication: Journal of Geophysical Research Atmospheres
ISSN: 21698996
Publishing Year: 2013
Volume: 118, Issue:16
pages begin: 8984
pages end: 8999
Language: 英语
Scopus Keyword: Atmospheric chemistry ; Climate models ; Clouds ; Ozone ; Tropics ; Wave propagation ; Community atmosphere model ; Interannual variability ; Lower stratosphere ; Physical characteristics ; Stratospheric polar vortex ; Tropical stratosphere ; Tropical tropopause layers ; Wave-mean-flow interaction ; Ozone layer ; annual variation ; atmospheric modeling ; latitude ; ozone ; photochemistry ; polar vortex ; sensitivity analysis ; stratosphere ; tropical environment ; tropopause ; uncertainty analysis
English Abstract: Some key photochemical uncertainties that cannot be readily eliminated by current observations translate into a range of stratospheric O3 abundances in the tens of percent. The uncertainty in O3 production due to that in the cross sections for O2 in the Hertzberg continuum is studied here with the NCAR Community Atmosphere Model, which allows for interactive climate and ozone chemistry. A min-max range in the O2 cross sections of 30%, consistent with current uncertainties, changes O 3 abundances in the lower tropical stratosphere by up to 30%, with a relatively smaller and opposite change above 30 hPa. Here we have systematically examined the changes in the time-mean state, the seasonal cycle, and the interannual variability of the temperature and circulation associated with the 30% change in O2 cross sections. This study points to the important role of O3 in the lower tropical stratosphere in determining the physical characteristics of the tropical tropopause layer. Reducing O 2 cross sections by 30% increases ozone abundances which warms the lower stratosphere (60iS -60iN; 2 K maximum at equator) and lowers the tropopause height by 100-200 m (30iS -30iN). The large-scale warming leads to enhanced stratification near the tropopause which reduces upward wave propagation everywhere except for high latitudes. The lowermost tropical stratosphere is better ventilated during austral winter. The annual cycle of ozone is amplified. The interannual variability of the winter stratospheric polar vortices also increases, but the mechanism involves wave-mean flow interaction, and the exact role of ozone in it needs further investigation. © 2013. Her Majesty the Queen in Right of Canada. American Geophysical Union.
Funding Project: DE-AC02-05CH11231 ; DE-AC52-07NA27344 ; DE-SC0007021
Citation statistics:
Document Type: 期刊论文
Appears in Collections:影响、适应和脆弱性

Files in This Item:

There are no files associated with this item.

Affiliation: Department of Earth System Science, University of California, Irvine, CA 92697, United States; Lawrence Livermore National Laboratory, Livermore, CA, United States

Recommended Citation:
Hsu J.,Prather M.J.,Bergmann D.,et al. Sensitivity of stratospheric dynamics to uncertainty in O<inf>3</inf> production[J]. Journal of Geophysical Research Atmospheres,2013-01-01,118(16)
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Hsu J.]'s Articles
[Prather M.J.]'s Articles
[Bergmann D.]'s Articles
Similar articles in Baidu Scholar
[Hsu J.]'s Articles
[Prather M.J.]'s Articles
[Bergmann D.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Hsu J.]‘s Articles
[Prather M.J.]‘s Articles
[Bergmann D.]‘s Articles
Related Copyright Policies
所有评论 (0)

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.