globalchange  > 过去全球变化的重建
DOI: 10.1016/j.palaeo.2017.04.023
论文题名:
Eocene–early Oligocene climate and vegetation change in southern China: Evidence from the Maoming Basin
作者: Herman A.B.; Spicer R.A.; Aleksandrova G.N.; Yang J.; Kodrul T.M.; Maslova N.P.; Spicer T.E.V.; Chen G.; Jin J.-H.
刊名: Palaeogeography, Palaeoclimatology, Palaeoecology
ISSN: 0031-0182
出版年: 2017
卷: 479
起始页码: 126
结束页码: 137
语种: 英语
英文关键词: Altimetry ; CLAMP ; Monsoon climate ; Plant fossils
英文摘要: Although the Eocene-Oligocene climate transition marks a critical point in the development of the ‘icehouse’ global climate of the present little is known about this important change in the terrestrial realm at low latitudes. Our palynological study of the Shangcun Formation shows it to be early Oligocene in age: palyno-assemblages in the lower part of the formation indicate a cool interval dominated by conifer pollen in the earliest Oligocene followed by a warmer regime in the second half of the early Oligocene. To quantify middle Eocene to late early Oligocene climate conditions at low (~ 20°N) palaeolatitudes in southern Asia several thousand leaf fossil specimens from the Maoming Basin, southern China, were subjected to a multivariate (CLAMP) analysis of leaf form. For terrestrial palaeoclimate comparisons to be valid the palaeoaltitude at which the proxy data are obtained must be known. We find that leaves preserved in the Youganwo (middle Eocene), Huangniuling (late Eocene) and Shangcun (early Oligocene) formations were likely to have been deposited well above sea level at different palaeoelevations. In the Youganwo Formation fine-grained sediments were deposited at an altitude of ~ 1.5 km, after which the basin dropped to ~ 0.5 km by the time the upper Huangniuling sediments were deposited. The basin floor then rose again by 0.5 km reaching an altitude of approximately 1 km in which the Shangcun Formation fine-grained sediments were accumulated. Within the context of these elevation changes the prevailing climates experienced by the Youganwo, Lower Huangniuling, Upper Huangniuling and Shangcun fossil floras were humid subtropical with hot summers and warm winters, but witnessed a progressive increase in rainfall seasonality. By the early Oligocene rainfall seasonality was similar to that of the modern monsoonal climate of Guangdong Province, southern China. All floras show leaf physiognomic spectra most similar to those growing under the influence of the modern Indonesia-Australia Monsoon, but with no evidence of any adaptation to today's South or East Asia Monsoon regimes. The Upper Huangniuling Flora, rich in dipterocarp plant megafossils, grew in the warmest conditions with the highest cold month mean temperature and at the lowest altitude. © 2017 Elsevier B.V.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/67808
Appears in Collections:过去全球变化的重建

Files in This Item:

There are no files associated with this item.


作者单位: State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation; Environment, Earth, Ecosystems, The Open University, Milton Keynes, United Kingdom; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China; Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russian Federation

Recommended Citation:
Herman A.B.,Spicer R.A.,Aleksandrova G.N.,et al. Eocene–early Oligocene climate and vegetation change in southern China: Evidence from the Maoming Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2017-01-01,479
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Herman A.B.]'s Articles
[Spicer R.A.]'s Articles
[Aleksandrova G.N.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Herman A.B.]'s Articles
[Spicer R.A.]'s Articles
[Aleksandrova G.N.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Herman A.B.]‘s Articles
[Spicer R.A.]‘s Articles
[Aleksandrova G.N.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.