globalchange  > 影响、适应和脆弱性
DOI: 10.5194/tc-10-2173-2016
Scopus记录号: 2-s2.0-84988696976
论文题名:
Estimates of ikaite export from sea ice to the underlying seawater in a sea ice-seawater mesocosm
作者: Geilfus N; -X; , Galley R; J; , Else B; G; T; , Campbell K; , Papakyriakou T; , Crabeck O; , Lemes M; , Delille B; , Rysgaard S
刊名: Cryosphere
ISSN: 19940416
出版年: 2016
卷: 10, 期:5
起始页码: 2173
结束页码: 2189
语种: 英语
英文关键词: acidification ; aragonite ; carbon cycle ; carbon dioxide ; dissolved inorganic carbon ; ikaite ; meltwater ; mesocosm ; precipitation (chemistry) ; salinity ; sea ice ; seawater ; water column
英文摘要: The precipitation of ikaite and its fate within sea ice is still poorly understood.We quantify temporal inorganic carbon dynamics in sea ice from initial formation to its melt in a sea ice.seawater mesocosm pool from 11 to 29 January 2013. Based on measurements of total alkalinity (TA) and total dissolved inorganic carbon (TCO2), the main processes affecting inorganic carbon dynamics within sea ice were ikaite precipitation and CO2 exchange with the atmosphere. In the underlying seawater, the dissolution of ikaite was the main process affecting inorganic carbon dynamics. Sea ice acted as an active layer, releasing CO2 to the atmosphere during the growth phase, taking up CO2 as it melted and exporting both ikaite and TCO2 into the underlying seawater during the whole experiment. Ikaite precipitation of up to 167 μmolkg-1 within sea ice was estimated, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64.66 μmolkg-1 in the water column. The export of TCO2 from sea ice to the water column increased the underlying seawater TCO2 by 43.5 μmolkg-1, suggesting that almost all of the TCO2 that left the sea ice was exported to the underlying seawater. The export of ikaite from the ice to the underlying seawater was associated with brine rejection during sea ice growth, increased vertical connectivity in sea ice due to the upward percolation of seawater and meltwater flushing during sea ice melt. Based on the change in TA in the water column around the onset of sea ice melt, more than half of the total ikaite precipitated in the ice during sea ice growth was still contained in the ice when the sea ice began to melt. Ikaite crystal dissolution in the water column kept the seawater pCO2 undersaturated with respect to the atmosphere in spite of increased salinity, TA and TCO2 associated with sea ice growth. Results indicate that ikaite export from sea ice and its dissolution in the underlying seawater can potentially hamper the effect of oceanic acidification on the aragonite saturation state (ωaragonite) in fall and in winter in ice-covered areas, at the time when ωaragonite is smallest.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/75074
Appears in Collections:影响、适应和脆弱性
气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada; Arctic Research Centre, Aarhus University, Aarhus, Denmark; Department of Geography, University of Calgary, Calgary, Canada; Unité d'Oceánographie Chimique, Université de Liège, Liège, Belgium; Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland

Recommended Citation:
Geilfus N,-X,, Galley R,et al. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice-seawater mesocosm[J]. Cryosphere,2016-01-01,10(5)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Geilfus N]'s Articles
[-X]'s Articles
[, Galley R]'s Articles
百度学术
Similar articles in Baidu Scholar
[Geilfus N]'s Articles
[-X]'s Articles
[, Galley R]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Geilfus N]‘s Articles
[-X]‘s Articles
[, Galley R]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.