globalchange  > 影响、适应和脆弱性
DOI: 10.5194/tc-10-341-2016
Scopus记录号: 2-s2.0-84958966401
论文题名:
Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis
作者: Harp D; R; , Atchley A; L; , Painter S; L; , Coon E; T; , Wilson C; J; , Romanovsky V; E; , Rowland J; C
刊名: Cryosphere
ISSN: 19940416
出版年: 2016
卷: 10, 期:1
起始页码: 341
结束页码: 358
语种: 英语
英文关键词: active layer ; annual variation ; calibration ; climate forcing ; greenhouse gas ; moisture content ; Monte Carlo analysis ; numerical model ; permafrost ; soil moisture ; soil property ; twenty first century
英文摘要: The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil property uncertainty to another source of permafrost uncertainty, structural climate model uncertainty. We show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location. © Author(s) 2016.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/75189
Appears in Collections:影响、适应和脆弱性
气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States; Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Geophysical Institute, University of Alaska Fairbanks, United States

Recommended Citation:
Harp D,R,, Atchley A,et al. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis[J]. Cryosphere,2016-01-01,10(1)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Harp D]'s Articles
[R]'s Articles
[, Atchley A]'s Articles
百度学术
Similar articles in Baidu Scholar
[Harp D]'s Articles
[R]'s Articles
[, Atchley A]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Harp D]‘s Articles
[R]‘s Articles
[, Atchley A]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.