globalchange  > 影响、适应和脆弱性
DOI: 10.1002/2013MS000292
Scopus记录号: 2-s2.0-84932190279
论文题名:
Technical note: Introduction to MIMICA, a large-eddy simulation solver for cloudy planetary boundary layers
作者: Savre J; , Ekman A; M; L; , Svensson G
刊名: Journal of Advances in Modeling Earth Systems
ISSN: 19422466
出版年: 2015
卷: 6, 期:3
起始页码: 630
结束页码: 649
语种: 英语
英文关键词: Atmospheric boundary layer ; Atmospheric thermodynamics ; Boundary layers ; Clouds ; Ice ; Boundary layer clouds ; Boundary layer dynamics ; Marine stratocumulus ; Microphysical property ; Model development ; Number concentration ; Planetary boundary layers ; Stratiform clouds ; Large eddy simulation ; arctic environment ; boundary layer ; cloud cover ; cloud microphysics ; concentration (composition) ; crystal structure ; hydrometeorology ; ice crystal ; in situ measurement ; large eddy simulation ; momentum ; planetary atmosphere ; size distribution ; stratiform cloud ; water depth ; Sweden
英文摘要: In large-eddy simulation (LES), large-scale turbulent structures are explicitly resolved on the numerical grid while the dissipative turbulent eddies, typically smaller than the grid size, must be modeled. Because in the atmospheric boundary layer a large disparity of turbulent scales exists (about 9 orders of magnitude separate the largest and smallest scales), LES is considered as an essential modeling approach to capture the physics and dynamics of boundary layer clouds. A new LES solver developed at Stockholm University is presented here for the first time. The model solves for nonhydrostatic anelastic equations using high-order low-dissipative numerical schemes for the advection of scalars and momentum. A two-moment bulk microphysics scheme is implemented representing five types of hydrometeors including ice crystals and snow. The LES is evaluated based on simulations of two well-documented stratiform cloud events that were previously used for LES intercomparisons. In the first one, a marine drizzling stratocumulus observed during DYCOMS-II, the model is shown to predict bulk cloud microphysical and dynamical properties within the range of the intercomparison model results. In the second case, based on a monolayer Arctic mixed-phase cloud observed during ISDAC, we found that when using fast-falling crystals, ice quickly precipitates out of the cloud without significant growth, resulting in very low ice water paths. The simulated clouds are also found to be very sensitive to the prescribed ice crystal number concentration: multiplying the ice concentration by a factor 2.5 results in rapid cloud dissipation in the most extreme case. Overall, these results are found to be consistent with former studies of Arctic mixed-phase clouds as well as in situ measurements. More specifically, when the ice number concentration and parameterized ice habit are constrained by measurements, simulated microphysical properties such as the ice water path and ice crystal size distribution are found to agree well with observations. Key Points Introduction of a new LES solver developed at Stockholm University Evaluation based on a former LES intercomparison of a marine stratocumulus Evaluation based on a low-level mixed-phase Arctic cloud from ISDAC © 2014. The Authors.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/76027
Appears in Collections:影响、适应和脆弱性
气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Department of Meteorology, Bolin Center for Climate Research Stockholm University, Stockholm, Sweden

Recommended Citation:
Savre J,, Ekman A,M,et al. Technical note: Introduction to MIMICA, a large-eddy simulation solver for cloudy planetary boundary layers[J]. Journal of Advances in Modeling Earth Systems,2015-01-01,6(3)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Savre J]'s Articles
[, Ekman A]'s Articles
[M]'s Articles
百度学术
Similar articles in Baidu Scholar
[Savre J]'s Articles
[, Ekman A]'s Articles
[M]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Savre J]‘s Articles
[, Ekman A]‘s Articles
[M]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.