globalchange  > 气候变化事实与影响
DOI: 10.1002/2016GB005381
Scopus记录号: 2-s2.0-84984688343
论文题名:
Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls
作者: Zhang B; , Tian H; , Ren W; , Tao B; , Lu C; , Yang J; , Banger K; , Pan S
刊名: Global Biogeochemical Cycles
ISSN: 8866236
出版年: 2016
卷: 30, 期:9
起始页码: 1246
结束页码: 1263
语种: 英语
英文关键词: biogeochemical modeling ; climate change ; irrigation ; methane ; optimized water management ; rice field
Scopus关键词: carbon dioxide ; climate change ; concentration (composition) ; emission ; emission control ; fertilizer application ; management practice ; methane ; optimization ; paddy field ; spatiotemporal analysis ; water management
英文摘要: Given the importance of the potential positive feedback between methane (CH4) emissions and climate change, it is critical to accurately estimate the magnitude and spatiotemporal patterns of CH4 emissions from global rice fields and better understand the underlying determinants governing the emissions. Here we used a coupled biogeochemical model in combination with satellite-derived contemporary inundation area to quantify the magnitude and spatiotemporal variation of CH4 emissions from global rice fields and attribute the environmental controls of CH4 emissions during 1901–2010. Our study estimated that CH4 emissions from global rice fields varied from 18.3 � 0.1 Tg CH4/yr (Avg. �1 SD) under intermittent irrigation to 38.8 � 1.0 Tg CH4/yr under continuous flooding in the 2000s, indicating that the magnitude of CH4 emissions from global rice fields is largely dependent on different water schemes. Over the past 110 years, our simulated results showed that global CH4 emissions from rice cultivation increased by 85%. The expansion of rice fields was the dominant factor for the increasing trends of CH4 emissions, followed by elevated CO2 concentration, and nitrogen fertilizer use. On the contrary, climate variability had reduced the cumulative CH4 emissions for most of the years over the study period. Our results imply that CH4 emissions from global rice fields could be reduced through optimizing irrigation practices. Therefore, the future magnitude of CH4 emissions from rice fields will be determined by the human demand for rice production as well as the implementation of optimized water management practices. �2016. American Geophysical Union. All Rights Reserved.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/77821
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: International Center for Climate and Global Change Research, Auburn University, Auburn, AL, United States; Department of Plant and Soil Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, United States; Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Recommended Citation:
Zhang B,, Tian H,, Ren W,et al. Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls[J]. Global Biogeochemical Cycles,2016-01-01,30(9)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Zhang B]'s Articles
[, Tian H]'s Articles
[, Ren W]'s Articles
百度学术
Similar articles in Baidu Scholar
[Zhang B]'s Articles
[, Tian H]'s Articles
[, Ren W]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Zhang B]‘s Articles
[, Tian H]‘s Articles
[, Ren W]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.