globalchange  > 气候变化事实与影响
DOI: 10.5194/hess-20-4375-2016
Scopus记录号: 2-s2.0-84994012307
论文题名:
Combined assimilation of streamflow and snow water equivalent for mid-term ensemble streamflow forecasts in snow-dominated regions
作者: Bergeron J; M; , Trudel M; , Leconte R
刊名: Hydrology and Earth System Sciences
ISSN: 10275606
出版年: 2016
卷: 20, 期:10
起始页码: 4375
结束页码: 4389
语种: 英语
Scopus关键词: Forecasting ; Snow melting systems ; Stream flow ; British Columbia , Canada ; Ensemble Kalman Filter ; Hydrologic prediction ; Prediction horizon ; Snow water equivalent ; Spatially distributed hydrologic modeling ; Streamflow forecast ; Streamflow prediction ; Snow ; basin analysis ; data assimilation ; hydrological modeling ; Kalman filter ; snow cover ; snow water equivalent ; snowmelt ; spatial distribution ; streamflow ; watershed ; British Columbia ; Canada ; Nechako River
英文摘要: The potential of data assimilation for hydrologic predictions has been demonstrated in many research studies. Watersheds over which multiple observation types are available can potentially further benefit from data assimilation by having multiple updated states from which hydrologic predictions can be generated. However, the magnitude and time span of the impact of the assimilation of an observation varies according not only to its type, but also to the variables included in the state vector. This study examines the impact of multivariate synthetic data assimilation using the ensemble Kalman filter (EnKF) into the spatially distributed hydrologic model CEQUEAU for the mountainous Nechako River located in British Columbia, Canada. Synthetic data include daily snow cover area (SCA), daily measurements of snow water equivalent (SWE) at three different locations and daily streamflow data at the watershed outlet. Results show a large variability of the continuous rank probability skill score over a wide range of prediction horizons (days to weeks) depending on the state vector configuration and the type of observations assimilated. Overall, the variables most closely linearly linked to the observations are the ones worth considering adding to the state vector due to the limitations imposed by the EnKF. The performance of the assimilation of basin-wide SCA, which does not have a decent proxy among potential state variables, does not surpass the open loop for any of the simulated variables. However, the assimilation of streamflow offers major improvements steadily throughout the year, but mainly over the short-term (up to 5 days) forecast horizons, while the impact of the assimilation of SWE gains more importance during the snowmelt period over the mid-term (up to 50 days) forecast horizon compared with open loop. The combined assimilation of streamflow and SWE performs better than their individual counterparts, offering improvements over all forecast horizons considered and throughout the whole year, including the critical period of snowmelt. This highlights the potential benefit of using multivariate data assimilation for streamflow predictions in snow-dominated regions. � Author(s) 2016.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/78698
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: Department of Civil Engineering, Universit� de Sherbrooke, Sherbrooke, Canada

Recommended Citation:
Bergeron J,M,, Trudel M,et al. Combined assimilation of streamflow and snow water equivalent for mid-term ensemble streamflow forecasts in snow-dominated regions[J]. Hydrology and Earth System Sciences,2016-01-01,20(10)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Bergeron J]'s Articles
[M]'s Articles
[, Trudel M]'s Articles
百度学术
Similar articles in Baidu Scholar
[Bergeron J]'s Articles
[M]'s Articles
[, Trudel M]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Bergeron J]‘s Articles
[M]‘s Articles
[, Trudel M]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.