globalchange  > 气候变化事实与影响
DOI: 10.5194/hess-20-1869-2016
Scopus记录号: 2-s2.0-84969754438
论文题名:
Adaptation of water resource systems to an uncertain future
作者: Walsh C; L; , Blenkinsop S; , Fowler H; J; , Burton A; , Dawson R; J; , Glenis V; , Manninga L; J; , Jahanshahi G; , Kilsby C; G
刊名: Hydrology and Earth System Sciences
ISSN: 10275606
出版年: 2016
卷: 20, 期:5
起始页码: 1869
结束页码: 1884
语种: 英语
Scopus关键词: Climate change ; Climate models ; Drought ; Gas emissions ; Greenhouse gases ; Population statistics ; Resource allocation ; Uncertainty analysis ; Water management ; Water supply ; Adaptation decisions ; Climate change adaptation ; Integrated modelling ; Rainfall-runoff modeling ; Water resource planning ; Water resource systems ; Water resources management ; Waterresource management ; Water resources ; adaptive management ; analytical framework ; climate change ; demand analysis ; drought ; future prospect ; greenhouse gas ; population growth ; simulation ; top-down approach ; uncertainty analysis ; water management ; water resource ; water supply ; England ; Thames Basin ; United Kingdom
英文摘要: Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75% reduces the median frequency of drought order measures by 50% by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30% reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence, a portfolio of measures is required. © 2016 Author(s).
Citation statistics:
被引频次[WOS]:17   [查看WOS记录]     [查看WOS中相关记录]
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/78844
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: Centre for Earth Systems Engineering Research, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

Recommended Citation:
Walsh C,L,, Blenkinsop S,et al. Adaptation of water resource systems to an uncertain future[J]. Hydrology and Earth System Sciences,2016-01-01,20(5)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Walsh C]'s Articles
[L]'s Articles
[, Blenkinsop S]'s Articles
百度学术
Similar articles in Baidu Scholar
[Walsh C]'s Articles
[L]'s Articles
[, Blenkinsop S]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Walsh C]‘s Articles
[L]‘s Articles
[, Blenkinsop S]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.