globalchange  > 气候变化事实与影响
DOI: 10.5194/hess-22-789-2018
Scopus记录号: 2-s2.0-85041436563
论文题名:
A global hydrological simulation to specify the sources of water used by humans
作者: Hanasaki N; , Yoshikawa S; , Pokhrel Y; , Kanae S
刊名: Hydrology and Earth System Sciences
ISSN: 10275606
出版年: 2018
卷: 22, 期:1
起始页码: 789
结束页码: 817
语种: 英语
Scopus关键词: Abstracting ; Desalination ; Digital storage ; Economics ; Geodetic satellites ; Groundwater ; Hydraulic structures ; Land use ; Rivers ; Seawater ; Stream flow ; Surface waters ; Sustainable development ; Underground reservoirs ; Water ; Water resources ; Environmental consequences ; Global water resources ; Gravity recovery and climate experiment satellites ; Hydrological models ; Hydrological simulations ; Seawater desalination ; Spatial resolution ; Terrestrial water storage ; Reservoirs (water) ; GRACE ; groundwater ; hydrological modeling ; performance assessment ; resource assessment ; simulation ; sustainability ; water resource ; water use
英文摘要: Humans abstract water from various sources to sustain their livelihood and society. Some global hydrological models (GHMs) include explicit schemes of human water abstraction, but the representation and performance of these schemes remain limited. We substantially enhanced the water abstraction schemes of the H08 GHM. This enabled us to estimate water abstraction from six major water sources, namely, river flow regulated by global reservoirs (i.e., reservoirs regulating the flow of the world's major rivers), aqueduct water transfer, local reservoirs, seawater desalination, renewable groundwater, and nonrenewable groundwater. In its standard setup, the model covers the whole globe at a spatial resolution of 0.5° × 0.5°, and the calculation interval is 1 day. All the interactions were simulated in a single computer program, and all water fluxes and storage were strictly traceable at any place and time during the simulation period. A global hydrological simulation was conducted to validate the performance of the model for the period of 1979-2013 (land use was fixed for the year 2000). The simulated water fluxes for water abstraction were validated against those reported in earlier publications and showed a reasonable agreement at the global and country level. The simulated monthly river discharge and terrestrial water storage (TWS) for six of the world's most significantly human-affected river basins were compared with gauge observations and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. It is found that the simulation including the newly added schemes outperformed the simulation without human activities. The simulated results indicated that, in 2000, of the 3628±75 km3 yr-1 global freshwater requirement, 2839±50 km3 yr-1 was taken from surface water and 789±30 km3 yr-1 from groundwater. Streamflow, aqueduct water transfer, local reservoirs, and seawater desalination accounted for 1786±23, 199±10, 106±5, and 1.8±0 km3 yr-1 of the surface water, respectively. The remaining 747±45 km3 yr-1 freshwater requirement was unmet, or surface water was not available when and where it was needed in our simulation. Renewable and nonrenewable groundwater accounted for 607±11 and 182±26 km3 yr-1 of the groundwater total, respectively. Each source differed in its renewability, economic costs for development, and environmental consequences of usage. The model is useful for performing global water resource assessments by considering the aspects of sustainability, economy, and environment. © Author(s) 2018.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/79409
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: National Institute for Environmental Studies, Tsukuba, Japan; International Institute for Applied System Analyses, Laxenburg, Austria; Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo, Japan; Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States

Recommended Citation:
Hanasaki N,, Yoshikawa S,, Pokhrel Y,et al. A global hydrological simulation to specify the sources of water used by humans[J]. Hydrology and Earth System Sciences,2018-01-01,22(1)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Hanasaki N]'s Articles
[, Yoshikawa S]'s Articles
[, Pokhrel Y]'s Articles
百度学术
Similar articles in Baidu Scholar
[Hanasaki N]'s Articles
[, Yoshikawa S]'s Articles
[, Pokhrel Y]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Hanasaki N]‘s Articles
[, Yoshikawa S]‘s Articles
[, Pokhrel Y]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.