globalchange  > 气候变化事实与影响
DOI: 10.5194/hess-22-819-2018
Scopus记录号: 2-s2.0-85041285313
论文题名:
Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements
作者: Schilperoort B; , Coenders-Gerrits M; , Luxemburg W; , Rodríguez C; J; , Vaca C; C; , Savenije H
刊名: Hydrology and Earth System Sciences
ISSN: 10275606
出版年: 2018
卷: 22, 期:1
起始页码: 819
结束页码: 830
语种: 英语
Scopus关键词: Digital storage ; Energy balance ; Forestry ; Heat flux ; Heat storage ; Latent heat ; Solar radiation ; Temperature measurement ; Temperature sensors ; Uncertainty analysis ; Wind ; Air temperature measurement ; Distributed temperature sensing ; Eddy covariance data ; Measured temperatures ; Monin-Obukhov similarity theory ; Sensible and latent heat fluxes ; Vertical temperature profile ; Wet bulb temperature ; Atmospheric temperature ; air temperature ; Bowen ratio ; eddy covariance ; energy balance ; energy storage ; forest canopy ; latent heat flux ; measurement method ; mixed forest ; quality control ; sensible heat flux ; solar radiation ; spatial resolution ; temperature gradient ; tree ; Netherlands
英文摘要: Rapid improvements in the precision and spatial resolution of distributed temperature sensing (DTS) technology now allow its use in hydrological and atmospheric sciences. Introduced by) is the use of DTS for measuring the Bowen ratio (BR-DTS), to estimate the sensible and latent heat flux. The Bowen ratio is derived from DTS-measured vertical profiles of the air temperature and wet-bulb temperature. However, in previous research the measured temperatures were not validated, and the cables were not shielded from solar radiation. Additionally, the BR-DTS method has not been tested above a forest before, where temperature gradients are small and energy storage in the air column becomes important. In this paper the accuracy of the wet-bulb and air temperature measurements of the DTS are verified, and the resulting Bowen ratio and heat fluxes are compared to eddy covariance data. The performance of BR-DTS was tested on a 46 m high tower in a mixed forest in the centre of the Netherlands in August 2016. The average tree height is 26 to 30 m, and the temperatures are measured below, in, and above the canopy. Using the vertical temperature profiles the storage of latent and sensible heat in the air column was calculated. We found a significant effect of solar radiation on the temperature measurements, leading to a deviation of up to 3 K. By installing screens, the error caused by sunlight is reduced to under 1 K. Wind speed seems to have a minimal effect on the measured wet-bulb temperature, both below and above the canopy. After a simple quality control, the Bowen ratio measured by DTS correlates well with eddy covariance (EC) estimates (r2 = 0.59). The average energy balance closure between BR-DTS and EC is good, with a mean underestimation of 3.4 W m-2 by the BR-DTS method. However, during daytime the BR-DTS method overestimates the available energy, and during night-time the BR-DTS method estimates the available energy to be more negative. This difference could be related to the biomass heat storage, which is neglected in this study. The BR-DTS method overestimates the latent heat flux on average by 18.7 W m-2, with RMSE = 90 W m-2. The sensible heat flux is underestimated on average by 10.6 W m-2, with RMSE = 76 W m-2. Estimates of the BR-DTS can be improved once the uncertainties in the energy balance are reduced. However, applying, for example, Monin-Obukhov similarity theory could provide independent estimates for the sensible heat flux. This would make the determination of the highly uncertain and difficult to determine net available energy redundant. © 2018 Author(s).
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/79450
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: Delft University of Technology, Water Resources Section, Stevinweg 1, Delft, Netherlands; University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), Hengelosestraat 99, Enschede, Netherlands; Tecnológico de Costa Rica, Escuela de Ingeniería Forestal, Cartago, Costa Rica

Recommended Citation:
Schilperoort B,, Coenders-Gerrits M,, Luxemburg W,et al. Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements[J]. Hydrology and Earth System Sciences,2018-01-01,22(1)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Schilperoort B]'s Articles
[, Coenders-Gerrits M]'s Articles
[, Luxemburg W]'s Articles
百度学术
Similar articles in Baidu Scholar
[Schilperoort B]'s Articles
[, Coenders-Gerrits M]'s Articles
[, Luxemburg W]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Schilperoort B]‘s Articles
[, Coenders-Gerrits M]‘s Articles
[, Luxemburg W]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.