globalchange  > 全球变化的国际研究计划
项目编号: 1706723
项目名称:
SusChem: Development and fundamental investigation of high capacity cathode materials for high energy and low cost Na-ion batteries
作者: Hailong Chen
承担单位: Georgia Tech Research Corporation
批准年: 2017
开始日期: 2017-09-15
结束日期: 2020-08-31
资助金额: 339267
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Engineering - Chemical, Bioengineering, Environmental, and Transport Systems
英文关键词: sodium ion battery ; cathode material ; project ; cathode electrode material ; development ; material ; sodium intercalation ; lithium ion battery ; structure characterization ; low capacity ; high capacity ; low cost ; energy storage technology ; phase transition ; sodium-ion battery ; rational design ; deintercalation process ; potential solution ; educational impact ; project address energy storage system ; electrode material ; x-ray diffraction ; material design strategy ; minimal performance degradation
英文摘要: This project addresses energy storage systems for the transportation and the intermittent supply of electricity generated by wind and solar power technologies. One potential solution for these applications is the use of sodium-ion batteries that utilizes widely available and domestic resources. Sodium ion batteries have similar functioning mechanisms as lithium ion batteries but cost less, as sodium is much more abundant than lithium. Currently, the performances of sodium ion batteries are mainly limited by the cathode electrode materials. Most of the existing cathode materials of sodium ion batteries suffer from low capacity and short cycle life. In addition, precious metals such as cobalt and nickel are typically used in these electrode materials, which increases the cost. This project aims to develop low cost and high performance novel cathode materials based on the oxides of one of the most abundant elements, manganese. The cathode materials are designed using strategies derived from fundamental science that allow the cathode to be charge-discharge cycled for hundreds of times with minimal performance degradation. For educational impacts, the project will advance knowledge in the fields of solid state chemistry and electrochemistry. The progress and new findings of the project will be included in undergraduate and graduate courses and disseminated to high school teachers and students through summer programs. The outcomes of the project will expedite the development and commercialization of sodium ion batteries, and therefore significantly improve the sustainability of energy storage technologies.

The stability of the crystal structure in cathode electrode materials in continuous electrochemical charge-discharge cycles is key to obtain long cycle life in sodium ion batteries. This project focuses on rational design of novel sodium manganese oxide cathode materials with layered structures. Novel strategies are used to stabilize their structure by doping selected elements into the manganese sites. The doping is expected to effectively delay or mitigate the phase transitions during the sodium intercalation and deintercalation processes, therefore allowing high capacity and long cycle life. The designed materials will be synthesized and electrochemically tested. Multiple advanced characterization methods such as in situ X-ray diffraction will be used to investigate the changes of the crystal structure of the materials during electrochemical cycling. By interpreting the results from synthesis, electrochemical tests, and structure characterizations, insights on the structural stability of the layered cathode materials will be revealed, the hypotheses will be validated, and the materials design strategies will be verified and further refined to guide the development of next generation high performance cathode electrode materials for sodium ion batteries.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/88797
Appears in Collections:全球变化的国际研究计划
科学计划与规划

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Hailong Chen. SusChem: Development and fundamental investigation of high capacity cathode materials for high energy and low cost Na-ion batteries. 2017-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Hailong Chen]'s Articles
百度学术
Similar articles in Baidu Scholar
[Hailong Chen]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Hailong Chen]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.