globalchange  > 全球变化的国际研究计划
项目编号: 1737824
项目名称:
Dimensions: Collaborative Research: Integrating phylogenetic, genetic, and functional approaches to dissect the role of toxin tolerance in shaping Drosophila biodiversity
作者: Kelly Dyer
承担单位: University of Georgia Research Foundation Inc
批准年: 2017
开始日期: 2017-09-01
结束日期: 2022-08-31
资助金额: 634454
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Biological Sciences - Environmental Biology
英文关键词: tolerance ; biodiversity ; research ; toxin tolerance ; research test hypothesis ; potent cyclopeptide mushroom toxin ; potent toxin ; much research
英文摘要: Unusual adaptations to the environment have long fascinated scientists and the public. There has been much research to understand the evolution of morphological structures (e.g., shape, color, size). However, far less is known about the evolution of novel biochemical adaptations and the impact of these adaptations on the biodiversity of the organisms in which they appear. Of particular interest is how these traits arise if they are costly to the individuals who harbor them. This research investigates the evolution of biochemical adaptations and the genetic and ecological mechanisms that shape them. The research explores the tolerance of insects (fruit flies) to potent toxins in mushrooms that they consume. By investigating the mechanism of toxin tolerance and how this unique adaptation is maintained in this model system, the research will enhance the general understanding of how novel traits emerge and shape biodiversity. This project also includes activities designed to increase public scientific literacy and familiarity with biodiversity by training teachers and students, from middle school to the undergraduate level (particularly from underrepresented minorities), and generating photographic identification guides for insect species associated with mushrooms.

Flies from some groups of Drosophila feed on both toxic and non-toxic mushrooms, and can tolerate high doses of potent cyclopeptide mushroom toxins that are deadly to most other multi-cellular organisms. This research tests hypotheses that predict that: 1) tolerance to these toxic cyclopeptides evolved multiple times; 2) the genetic mechanism of tolerance is not the same in all species; and 3) trade-offs between the physiological costs of tolerance and the benefits of access to a low-competition resource maintain tolerance. The mechanisms of tolerance and their evolution within different fly species are being characterized using metabolomic and transcriptomic analyses that are analyzed in a phylogenetic framework. To assess the genetic basis of variation in toxin tolerance, the researchers are performing artificial selection experiments and genome sequencing. Finally, observational and competition experiments are being used to identify how selective pressures maintain toxin tolerance in natural populations. In sum, this research will provide an in-depth evolutionary, ecological, and physiological assessment of a costly and novel biochemical adaptation, and its impact on biodiversity.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/89044
Appears in Collections:全球变化的国际研究计划
科学计划与规划

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Kelly Dyer. Dimensions: Collaborative Research: Integrating phylogenetic, genetic, and functional approaches to dissect the role of toxin tolerance in shaping Drosophila biodiversity. 2017-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Kelly Dyer]'s Articles
百度学术
Similar articles in Baidu Scholar
[Kelly Dyer]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Kelly Dyer]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.