globalchange  > 全球变化的国际研究计划
项目编号: 1604293
项目名称:
Nanocrystal Precursors to Doped Cesium Metal Halide Perovskite Photovoltaics
作者: Aaron Fafarman
承担单位: Drexel University
批准年: 2016
开始日期: 2016-06-15
结束日期: 2019-05-31
资助金额: 302118
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Engineering - Chemical, Bioengineering, Environmental, and Transport Systems
英文关键词: cesium lead iodide ; inorganic-organic halide perovskite material ; organic metal halide perovskite material ; dissimilar halide perovskite phase ; hybrid organic/inorganic methylammonium lead iodide perovskite material ; cesium metal halide perovskite ; perovskite solar cell material ; cesium tin iodide perovskite phase material ; present organic-inorganic perovskite photovoltaic device ; all-inorganic cesium perovskite ; mixed cesium lead chloride ; element cesium ; perovskite form ; mixed crystal perovskite thin film
英文摘要: The sun represents the most abundant potential source of sustainable energy on earth. Solar cells for producing electricity require materials that absorb the sun's energy and convert its photons to electrons, a process called photovoltaics. Recently, materials based on inorganic-organic halide perovskite materials have achieved promising solar energy power conversion efficiency approaching that of silicon solar cells, and can be made from earth-abundant elements using lower-cost, solution based fabrication methods. However, present organic-inorganic perovskite photovoltaic devices degrade in the presence of moisture in air, and the organic component is one reason for this lack of stability. The goal of this project is develop new class of perovskite solar cell materials that are made entirely of inorganic, nanometer sized crystals. The innovative aspect of this approach is that by fusing together different types of nanocrystals which contain the elements cesium and chloride, the stability of the perovskite in moisture will be much improved. As part of the educational activities associated with this project, solar photovoltaic concepts will be integrated into hands-on demos at Philly Materials Day in Philadelphia, PA, as part of an effort to reinforce state education standards in STEM teaching.

The overall goal of this research is to employ chemically-induced sintering of colloidal nanocrystals to produce doped, polycrystalline thin films of cesium metal halide perovskites for use in solar photovoltaic devices. Cesium lead iodide and cesium tin iodide perovskite phase materials share many attributes with the hybrid organic/inorganic methylammonium lead iodide perovskite materials for solar photovoltaics. However, relative to organic metal halide perovskite materials, the all-inorganic cesium perovskites are both less volatile and less chemically reactive, but are still not stable in the presence of atmospheric moisture. It is hypothesized that doping with chloride will stabilize the cesium lead iodide in the perovskite form. To carry out the chloride doping, a hetergenous-phase reaction is used to sinter solid films of mixed cesium lead chloride and cesium lead iodide nanocrystals. By this approach, non-equilibrium, mixed nanocrystal thin films can be synthesized. This nanocrystal-based approach also makes it possible to follow the progress and products of the synthesis reactions with in-situ, temperature-dependent absorption spectroscopy to detect both mixing and phase-separation at microscopic levels, allowing for elucidation of kinetically vs. thermodynamically controlling processes. The analytical approaches proposed here present an opportunity to mechanistically understand the intrinsic miscibility of two dissimilar halide perovskite phases to promote the overall phase stability of mixed crystal perovskite thin films.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/92076
Appears in Collections:全球变化的国际研究计划
科学计划与规划

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Aaron Fafarman. Nanocrystal Precursors to Doped Cesium Metal Halide Perovskite Photovoltaics. 2016-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Aaron Fafarman]'s Articles
百度学术
Similar articles in Baidu Scholar
[Aaron Fafarman]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Aaron Fafarman]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.