globalchange  > 影响、适应和脆弱性
项目编号: 1357920
项目名称:
EPRI: On-demand Sweating-Boosted Air Cooled Heat-Pipe Condensers for Green Power Plants
作者: Chen Li
承担单位: University of South Carolina at Columbia
批准年: 2013
开始日期: 2014-05-01
结束日期: 2018-04-30
资助金额: USD675004
资助来源: US-NSF
项目类别: Continuing grant
国家: US
语种: 英语
特色学科分类: Engineering - Chemical, Bioengineering, Environmental, and Transport Systems
英文关键词: power plant ; heat ; sweat-evaporation ; heat acquisition ; condenser ; sweat-boosted ; dropwise condensation ; acc ; conductive heat pipe ; weather condition ; functionalized carbon nanotube ; ambient air temperature ; heat rejection process ; engineering phase change heat transfer ; component level model ; power production ; power generation efficiency ; lab scale condenser ; sweat-boosted air cooling ; major heat transfer process ; air-cooled condenser ; novel heat-pipe condenser ; high performance heat pipe ; active dissemination ; conventional acc ; foundational knowledge ; on-demand sweat-boosted air cooling ; condenser core ; ambient condition ; air cooling performance
英文摘要: 1357920
Li

Hybrid cooling, as proposed here, will have direct impact on power plants, particularly in increasing the power generation efficiency, reducing approximately 70% water usage (compared to cooling towers) and by alleviating the dependence of air cooling performance on the ambient conditions (i.e. weather conditions; ambient air temperature and moisture, cross winds etc.). The foundational knowledge gained from this project will stimulate the transition from current cooling equipment of power plants to this unique and novel technology. The substantial water saving will help relieve the water crisis facing US and the world. By active dissemination of the fundamental findings, it will offer the scientific community a unique understanding of effectively cooling large scale power plant units in an efficient environment-friendly, and sustainable way.

In this research, novel heat-pipe condensers cooled by on-demand sweat-boosted air cooling will be developed to achieve unprecedented cooling capability and substantially reduce the size and footprint of air-cooled condensers (ACC), with a minimal penalty in power production. This can be achieved by innovatively engineering phase change heat transfer to drastically enhance three major heat transfer processes in ACC. Specifically, heat acquisition will be enhanced by dropwise condensation on robust Nickel alloy coatings created by atmospheric plasma spray (APS); temperature difference can be significantly reduced by highly conductive heat pipes (as the condenser core) enabled by novel hybrid microscale wick structures; and the heat rejection process will be dramatically enhanced by devising sweat-evaporation that mimics the primary mechanism of mammals to effectively dissipate heat during physical exercise. Novel nanowicks will be developed from functionalized carbon nanotubes (CNTs) to realize evaporation and create durable self-cleaning coatings. The heat and mass transfer on micro/nano-engineered surfaces will be experimentally and numerically studied. Component level models will be integrated in a Virtual Test Bed (VTB) to achieve high fidelity modeling of ACCs and power plants. Compared with conventional ACCs, the capital cost can be potentially reduced by 67% as estimated in our preliminary model. To achieve the objectives of this three-year project, five major research tasks will be carried out: 1) designing and evaluating condensers in a VTB; 2) devising sweat-boosted air cooling; 3) developing high performance heat pipes as the core of the condenser; 4) enabling dropwise condensation for heat acquisition; and 5) benchmarking modeling in a lab scale condenser.

Underrepresented student support is emphasized in this project. Outreach activities geared towards high school students, teachers, and general public will be carried out.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/97023
Appears in Collections:影响、适应和脆弱性
气候减缓与适应

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Chen Li. EPRI: On-demand Sweating-Boosted Air Cooled Heat-Pipe Condensers for Green Power Plants. 2013-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Chen Li]'s Articles
百度学术
Similar articles in Baidu Scholar
[Chen Li]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Chen Li]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.